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PREFACE

This book is an intermediate-level text on electromagnetic fields and waves. It represents
a revision of the first two editions of the text, which in turn built upon an earlier volume
by two of the authors.* It assumes an introductory course in field concepts, which can
be the lower-division physics course in many colleges or universities, and a background
in calculus. Material on vectors, differential equations, Fourier analysis, and complex
notation for sinusoids is included in a form suitable for review or a first introduction.
We have given such introductions wherever the material is to be used and have related
them to real problems in fields and waves. Throughout the book, the derivations and
analyses are done in the most direct way possible. Emphasis is placed on physical
understanding, enhanced by numerous examples in the early chapters.

The fundamentals of electromagnetics, based on Maxwell’s brilliant theories, have
not changed since the first version of the text, but emphases have changed and new
applications continue to appear. The field of coherent optics for communications and
information processing continues to grow. New materials of importance to electronic
devices (for example, superconductors) have been developed. Integrated circuit ap-
proaches to guides, resonators, and antennas have grown in importance. All these ev-
olutions are reflected in expanded text and problem material in this edition. Perhaps the
most important change for persons who need to solve field problems is the growing
power of computers. At the simplest level, computers greatly speed numerical evalua-
tion of analytic expressions, easily giving answers over a wide range of parameters.
But there is also a growing library of wholly numerical techniques for finding solutions
to field and wave problems in which complex boundary shapes preclude analytic so-
lutions. We can only give an introduction to this important subject but excellent texts
and reviews are available to carry the interested student farther. It still remains important
to understand the basic laws and to develop strong physical pictures and computer
simulations can substantially add insight, especially in dynamic problems.

The basic order remains that of the second edition. The purpose of beginning with
static fields is not only to develop familiarity with vector field concepts but also to
recognize the fact that a large number of practical time-varying problems (especially
with small devices) can be treated by static techniques (i.e., are quasistatic). The dy-
namic treatment of Maxwell, with wave examples, follows immediately so that even in
a first term, the student will meet a mix of static, quasistatic, and wave problems. Once
the reader has covered the material of the first three chapters, he or she will find con-

* S. Ramo and J. R. Whinnery, Fields and Waves in Modern Radio, John Wiley & Sons (first
edition 1944; second edition, 1953). The first edition was prepared with the assistance of
the General Electric Company when the authors were employed in its laborafories.
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viii Preface \

siderable flexibility in using the text. Material on the electromagnetics of circuits (Chap-
ter 4) or on special waveguides (Chapter 9) may be delayed or even omitted and the
later chapters on microwave circuits, materials, and optigs can be used in various orders.
Selections from among the more advanced sections within a chapter are also possible
without disrupting the basic flow. |

The authors wish to thank the following reviewers for their helpful comments: Pro-
fessor Dennis Nyquist, Michigan State University; Prc%fessor Fred Fontaine, Cooper
Union; Professor Von R. Eshlemann, Stanford University; Professor Paul Weaver, Uni-
versity of Hawaii; Professor Charles Smith, University off Mississippi; Professor Murray
Black, George Mason University; Professor Donald Dudley, University of Arizona;
Professor B. J. Rickett, University of California at San Dlego and Professor Emily Van
Deventer, University of Toronto.

The authors gratefully acknowledge the helpful suggesnons of students and col-
leagues at Berkeley and users in other universities and in mdustry We particularly
thank D. J. Angelakos, C. K. Birdsall, K. K. Mei, J. Fleischman, M. Khalaf, B. Peters,
and Guochun Liang for their important contributions. We also express appreciation to
Doris Simpson, Ruth Dye, Lisa Lloyd-Maffei and Patricia Chen for their careful work
in the preparation of the manuscript. 1
August 1993 | Simon Ramo
John Whinnery
Theodore Van Duzer
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Stationary
Electric
Fields

1.1 INTRODUCTION

Electric fields have their sources in electric charges—electrons and ions. Nearly all real
electric fields vary to some extent with time, but for many problems the time variation
is slow and the field may be considered stationary in time (static) over the interval of
interest. For still other important cases (called quasistatic) the spatial distribution is
nearly the same as for static fields even though the actual fields may vary rapidly with
time. Because of the number of important cases in each of these classes, and because
static field concepts are simple and thus good for reviewing the vector operations needed
to describe fields quantitatively, we start with static electric fields in this chapter and
static magnetic fields in the next. The student approaching the problem in this way
must remember that these are special cases, and that the interactions between time-
varying fields can give rise to other phenomena, most notably the wave phenomena to
be studied later in the text.

Before beginning the quantitative development of this chapter, let us comment briefly
on a few applications to illustrate the kinds of problems that arise in electrostatics or
quasistatics. Electron and ion guns are good examples of electrostatic problems where
the distribution of fields is of great importance in the design. Electrode shapes are
designed to accelerate particles from a source and focus them into a beam of desired
size and velocity. Electron guns are used in cathode-ray oscilloscopes, in television
tubes, in the microwave traveling wave tubes of radar and satellite communication
systems, in electron microscopes, and for electron-beam lithography used for precision
definition of integrated-circuit device features.

Many electronic circuit elements may have quite rapidly varying currents and volt-
ages and yet at any instant have fields that are well represented by those calculated
from static field equations. This is generally true when the elements are small in com-
parison with wavelength. The passive capacitive, inductive, and resistive elements are
thus commonly analyzed by such quasistatic laws, up to very high frequencies; so also
are the semiconductor diodes and transistors which constitute the active elements of
electronic circuits.



2 Chapter 1 Stationary Electric Fields

Transmission lines, including the strip line used in microwave and millimeter-wave
integrated circuits even for frequencies well above 10 GHz, have properties that can be
calculated using the laws for static fields. This is far from being a static problem, but
we will see later in the text that for systems having no structural variations along one
axis (along the transmission line), the fields in the transﬁferse plane satisfy, exactly or
nearly exactly, static field laws.

There are many other examples of application of knowledge of static field laws. The
electrostatic precipitators used to remove dust and other solid particles from air,
xerography, and power switches and transmission systems (which must be designed to
avoid dielectric breakdown) all use static field concepts. Electric fields generated by
the human body are especially interesting examples. Thus the fields that are detected
by electroencephalography (fields of the brain) and electrocardiography (fields of the
heart) are of sufficiently low frequency to be distributediin the body in the same way
that static fields would be. \

In all the examples mentioned, the general problem is that of finding the distribution
of fields produced by given sources in a specified medium with defined boundaries on
the region of interest. Our approach will be to start w1th a simple experimental law
(Coulomb’s law) and then transform it into other forms which may be more general or
more useful for certain classes of problems. !

Most readers will have met this material before in physics courses or introductory
electromagnetics courses, so the approach will be that of review with the purposes of
deepening physical understanding and improving fammanty with the needed vector
algebra before turning to the more difficult time-varying problems

Basic Laws and Concepts of Eléctrostatics

1.2 FORCE BETWEEN ELECTRIC CHARGES: THE COIi\lCEPT OF ELECTRIC FIELD

It was known from ancient times that electrified bodies e)icert forces upon one another.

The effect was quantified by Charles A. Coulomb through brilliant experiments using
a torsion balance.! His experiments showed that like charges repel one another whereas
opposite charges attract; that force is proportional to the plroduct of charge magnitudes;

' An excellent description of Coulomb’s experiments and|the groundwork of earlier re-
searchers is given in R. S. Elliott, Electromagnetics, McGraw-Hill, New York, 1966. For a
detailed account of the history of this and other aspects|of electromagnetics, see E. T.
Whittaker, A History of the Theories of Aether and Electricity, Am. Inst. Physics, New York,
1987, or P. F. Mottelay, Biographical History of Electricity and Magnetism, Ayer Co. Pub-
lishers, Salem, NH, 1975.



1.2 Force Between Electric Charges: The Concept of Electric Field 3

that force is inversely proportional to the square of the distance between charges; and
that force acts along the line joining charges. Coulomb’s experiments were done in air,
but later generalizations show that force also depends upon the medium in which
charges are placed. Thus force magnitude may be written

9192
2
er

f=K 1)
where g, and ¢, are charge strengths, 1 is the distance between charges, ¢ is a constant
representing the effect of the medium, and K is a constant depending upon units. Di-
rection information is included by writing force as a vector f (denoted here as boldface)

and defining a vector f* of unit length pointing from one charge directly away from the
other:

f=ghf2; @)
er-

Various systems of units have been used, but that to be used in this text is the
International System (SI for the equivalent in French) introduced by Giorgi in 1901.
This is a meter—kilogram—second (mks) system, but the great advantage is that electric
quantities are in the units actually measured: coulombs, volts, amperes, etc. Conversion
factors to the classical systems still used in many references are given in Appendix 1.
Thus in the SI system, force in (2) is in newtons (kg-m/s?), ¢ in coulombs, r in meters,
and & in farads/meter. The constant K is chosen as 1/4 and the value of & for vacuum
found from experiment is

1 F
= 8854 X 1072 ~— x 107%— 3
%o 8.85 36 nm ®)
For other materials,
€= g8 “4)

where ¢, is the relative permittivity or dielectric constant of the material and is the
value usually tabulated in handbooks. Here we are considering materials for which &
is a scalar independent of strength and direction of the force and of position. More
general media are discussed in Sec. 1.3 and considered in more detail in Chapter 13.
Thus in SI units Coulomb’s law is written

9192

f = y 5
dmer | ®)

Generalizing from the example of two charges, we deduce that a charge placed in
the vicinity of a system of charges will also experience a force. This might be found
by adding vectorially the component forces from the individual charges of the system,
but it is convenient at this time to introduce the concept of an electric field as the force
per unit charge for each point of the region influenced by charges. We may define this
by introducing a test charge Ag at the point of definition small enough not to disturb
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the charge distribution to be studied. Electric field E is \‘then
f i
- \ 6
Ag | )

where f is the force acting on the infinitesimal test charge Ag.
The electric field arising from a point charge g in a homogeneous dielectric is then
given by the force law (5):

q .
4rer?

|
)

Since f is the unit vector directed from the point in a direction away from the charge,
the electric field vector is seen to point away from positive charges and toward negative
charges as seen in the lower half of Fig. 1.2a. The units of electric field magnitude in
the SI system are in volts per meter, as may be found by substituting units in (7):

_ coulombs meter _ Volts V)
farads (meter)>  meter (m)

We can see from the form of (7) that the total electric field for a system of point
charges may be found by adding vectorially the fields from the individual charges, as
is illustrated at point P of Fig. 1.2a for the charges g and |~ g. In this manner the electric
field vector could be found for any point in the vicinity of the two charges. An electric

PN
/ N

Fic. 1.2a Electric fields around two opposite charges. Lower half of figure shows the separate
fields E, and E_ of the two charges. Upper half shows the vector sum of E, and E_. Con-
struction of E is shown at one point P. u
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field line is defined as a line drawn tangent to the electric field vector at each point in
space. If the vector is constructed for enough points of the region, the electric field lines
can be drawn in roughly by following the direction of the vectors as illustrated in the
top half of Fig. 1.2a. Easier methods of constructing the electric field will be studied
in later sections, but the present method, although laborious, demonstrates clearly the
meaning of the electric field lines.

For fields produced by continuous distributions of charges, the superposition is by
integration of field contributions from the differential elements of charge. For volume
distributions, the elemental charge dg is p dV where p is charge per unit volume (C/m?)
and dV is the element of volume. For surface distributions, a surface density p, (C/m?)
is used with elemental surface dS. For filamentary distributions, a linear density p,
(C/m) is used with elemental length dl. An example of a centinuous distribution
follows.

Example 1.2
FIELD OF A RING OF CHARGE

Let us calculate the electric field at points on the z axis for a ring of positive charge of
radius a located in free space concentric with and perpendicular to the z axis, as shown
in Fig. 1.2b. The charge p, along the ring is specified in units of coulombs per meter
so the charge in a differential length is p, dl. The electric field of p, dl is designated by
dE in Fig. 1.2b and is given by (7) with r> = a* + 72, The component along the z
axis is dE cos 6 where cos 8 = z/(a®> + z2)!/2 Note that, by symmetry, the component
perpendicular to the axis is canceled by that of the charge element on the opposite side
of the ring. The total field at points on the axis is thus directed along the axis and is
the integral of the differential axial components. Taking d/ = a d¢ we have

E = J " paz dé _ paz
o dme(@® + Y7 2e(@® + 2y

®

pidl

~- dEcos 8

>z \Q‘
0 dE

Fic. 1.2b Electric field of a ring of charge.
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1.3 THE CONCEPT OF ELECTRIC FLUX AND FLUX|DENSITY: GAUSS'S LAW

It is convenient in handling electric field problems to introduce another vector more
directly related to charges than is electric field E. If we define

D = ¢E )
we notice from Eq. 1.2(7) that D about a point charge is radial and independent of the
material. Moreover, if we multiply the radial component D, by the area of a sphere of
radius r, we obtain |
4w =g | @)
We thus have a quantity exactly equal to the charge (in coulombs) so that it may be
thought of as the flux arising from that charge. D may then be thought of as the electric
flux density (C/m?). For historical reasons it is also known as the displacement vector
or electric induction.

It is easy to show (Prob. 1.3b) that for an arbitrarily shaped closed surface as in Fig.
1.3a, the normal component of D integrated over the surface surrounding a point charge
also gives g. The analogy is that of fluid flow in which|the fluid passing surface S of
Fig. 1.3b in a given time is the same as that passing plane S, perpendicular to the flow.
So fluid flow rate out of a region does not depend upon the shape of the surface used
to monitor it, so long as all surfaces enclose the same source. By superposition, the
result can be extended to a system of point charges or a continuous distribution of
charges, leading to the conclusion ‘

electric flux flowing out of a closed surface ’— charge enclosed 3

This is Gauss’s law and, although argued here from Coulomb s law for simple media,
is found to apply to more general media. It is thus a most general and important law.
Before illustrating its usefulness, let us look more carefﬁlly at the role of the medium.

A simplified picture showing why the force between charges depends upon the pres-
ence of matter is illustrated in Fig. 1.3¢. The electron clouds and the nuclei of the atoms
experience oppositely directed forces as a result of the presence of the isolated charges.

Fie. 1.3a Charge g and arbitrary surrounding surface.
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|
g !
|

Vo iL Ty ¥
Fie. 1.3b Flow of a fluid through surfaces S and S, .

Thus the atoms are distorted or polarized. There is a shift of the center of symmetry of
the electron cloud with respect to the nucleus in each atom as indicated schematically
in Fig. 1.3c. Similar distortions can occur in molecules, and an equivalent situation
arises in some materials where naturally polarized molecules have a tendency to be
aligned in the presence of free charges. The directions of the polarization are such for
most materials that the equivalent charge pairs in the atoms or molecules tend to coun-
teract the forces between the two isolated charges. The magnitude and the direction of
the polarization depend upon the nature of the material.

The above qualitative picture of polarization introduced by a dielectric may be quan-
tified by giving a more fundamental definition than (1) between D and E:

D=c¢cE+P @

O
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Fic. 1.3¢ Polarization of the atoms of a dielectric by a pair of equal positive charges.
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The first term gives the contribution that would exist ifi the electric field at that point
were in free space and the second measures the effect of the polarization of the material
(as in Fig. 1.3¢) and is called the electric polarization.

The polarization produced by the electric field in a material depends upon material
properties. If the properties do not depend upon position, the material is said to be
homogeneous. Most field problems are solved assuming homogeneity; inhomogeneous
media, exemplified by the earth’s atmosphere, are more difficult to analyze. If the
response of the material is the same for all directions of the electric field vector, it is
called isotropic. Special techniques are required for handling a field problem in an
anisotropic medium such as an ionized gas with an applied steady magnetic field. A
material is called /inear if the ratio of the response P to the field E is independent of
amplitude. Nonlinearities are generally not present except for high-amplitude fields. It
is also possible that the character of a material may be time variable, imposed, for
example, by passing a sound wave through it. Throughout most of this text, the media
will be considered to be homogeneous, isotropic, linear, and time invariant. Exceptions
will be studied in the final chapters. v

For isotropic, linear material the polarization is proportional to the field intensity and
we can write the linear relation i

P= EOXEE (5)

where the constant y, is called the electric susceptibility. Then (4) becomes the same
as (1), 1
D = gy(l + xJE = €E| ©6)

and the relative permittivity, defined in Eq. 1.2(4) is e, = g/gg = 1 + X,

Although we will describe a dielectric material largely by its permittivity, the con-
cepts of polarization and susceptibility are in a sense more fundamental and are con-
sidered in more detail in Chapter 13.

1.4 EXAMPLES OF THE USE OF GAL‘JSS'S Law

The simple but important examples to be discussed in this section show that Gauss’s
law can be used to find field strength in a very easy way for problems with certain
kinds of symmetry and given charges. The symmetry gives the direction of the electric
field directly and ensures that the flux is uniformly distributed. Knowledge of the charge
gives the total flux. Symmetry is then used to get flux density D and hence E = D/e.

Example 1.4a
FIELD IN A PLANAR SEMICONDUCTOR DEPLETION LAYER

For the first example, we consider a one-dimensional éituation where a metal is in
intimate (atomic) contact with a semiconductor. We assume that some of the typically
valence 4 (e.g., silicon) atoms have been replaced by ‘‘dopant’’ atoms of valence 5
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Metal ——*—— Semiconductor

Charge-free
region

Depletion
layer
FiG. 1.4a Model of a metal-semiconductor contact. The region to which Gauss’s law is applied
is the region between parallel planes shown dashed.

(e.g., phosphorus). The one extra electron in each atom is not needed for atomic bonding
and becomes free to move about in the semiconductor. Upon making the metal contact,
it is found that the free electrons are forced away from the surface for a distance d. The
region 0 = x = d is called a depletion region because it is depleted of the free electrons.
Since the dopant atoms were neutral before losing their extra electrons, they are posi-
tively charged when the region is depleted. This can be modeled as in Fig. 1.4a. In the
region x > d the donors are assumed to be completely compensated by free electrons
and it is therefore charge-free. (The abrupt change from compensated to uncompensated
behavior at x = d is a commonly used idealization.) By symmetry, the flux is
— x-directed only. The surface used in application of Gauss’s law consists of two infinite
parallel planes, one at x < d and one at x = d. This approximation is made because
the transverse dimensions of the contact are assumed to be much larger than 4. With
no applied fields, there is no average movement of the electrons in the compensated
region x = d so E must be zero there. Thus D is also zero in that region and all the
flux from the charged dopant atoms must terminate on negative charges at the metal
contact. Therefore, Gauss’s law gives, for a unit area,

—D.(x) = Npe(d — x) D
where N, and e are the volume density of donor ions and the charge per donor (mag-
nitude of electronic charge), respectively. Then the x component of the electric field is

- d
E, = D, _ Npetx — d) @)
’ € €

It should be clear that the simplicity of solution depended upon the symmetry of the
system; that is, that there were no variations in y and z.
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Examplie 1.4b ,
FIELD ABOUT A LINE CHARGE OR BETWEEN COAXIAL CYLINDERS

We introduced the line charge in ring form in Ex. 12| Let us now find the field E
produced by a straight, infinitely long line of uniformly} distributed charge. The radius
of the line is negligibly small and can be thought of as the two-dimensional equivalent
of a point charge. Practically, a long thin charged wire|is a good approximation. The
symmetry of this problem reveals that the force on a tes% charge, and hence the electric
field, can only be radial. Moreover, this electric field will not vary with angle about the
line charge, nor with distance along it. If the strength of the radial electric field is desired
at distance r from the line charge, Gauss’s law may be applied to an imaginary cylin-
drical surface of radius r and any length /. Since the electric field (and hence the electric
flux density D) is radial, there is no normal component at the ends of the cylinder and
hence no flux flow through them. However, D is exactly normal to the cylindrical part
of the surface, and does not vary with either angle or distance along the axis, so that
the flux out is the surface area 2] multiplied by the electric flux density D,. The
charge enclosed is the length / multiplied by the charge per unit length g, By Gauss’s
law, flux out equals the charge enclosed:

27riD, = g,
If the dielectric surrounding the wire has constant &,
D
E ==t=A ©
& 2mer

Hence, the electric field about the line charge has been obtained by the use of Gauss’s
law and the special symmetry of the problem. '

The same symmetry applies to the coaxial transmission line formed of two coaxial
conducting cylinders of radii 2 and b with dielectric & between them (Fig. 1.4b). Hence
the result (3) applies for radius r between a and b. We use this result to find the
capacitance in Sec. 1.9. '

Fic. 1.4b Coaxial line. °
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Fi6. 1.4c Spherical electrodes separated by two layers of dielectric materials.

Example 1.4c
FiELD BETWEEN CONCENTRIC SPHERICAL ELECTRODES WITH TWO DIELECTRICS

Figure 1.4c shows a structure formed of two conducting spheres of radii a and c, with
one dielectric €, extending from » = a to r = b, in spherical coordinates,> and a
second, &,, from r = b tor = c. This problem has spherical symmetry about the center,
which implies that the electric field will be radial, and independent of the angular
direction about the sphere. If the charge on the inner sphere is Q and that on the outer
sphere is — 0, the charge enclosed by an imaginary spherical surface of radius r selected
anywhere between the two conductors is only that charge O on the inner sphere. The
flux passing through it is the surface 477> multiplied by the radial component of the
flux density D,.. Hence, using Gauss’s law,

0

T 4qr?

()

The equation for the flux density is the same for either dielectric, since the flux passes
from the positive charge on the center conductor continuously to the negative charge
on the outer conductor. The electric field has a different value in the two regions,
however, since in each dielectric, D and E are related by the corresponding permittivity:

E =2 a<r<b )
e r”
0
E = b<r< 6
T 4areyr? rec ©

2 Note that r is used both for radius from the axis in the circular cylindrical coordinate
system and for radius from the origin in the spherical coordinate system. p is frequently
used for the former but may be confused with charge density, andR is used for the latter,
but is here reserved for distance between source and field points.
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The radial flux density is continuous at the dielectric discontinuity at » = b, but the

radial electric field is discontinuous there. |

Example 1.4d ’
FIELDS OF A SPHERICAL REGION OF UNIFORM CHARGE DENSITY

Consider a region of uniform charge density p extending from » = 0 to » = a. As in
the preceding example, Gauss’s law can be written as (4) Where, in this case, Q = $m?p
for r < a and @ = #ma’p for r = a. Then the flux denslities for the two regions are

D, = *’3- p r<a N
a3 h
= — - =
D, 3,2 p r=a ®)

1.5 SURFACE AND VOLUME INTEGRALS: GAUSS’? LAW IN VECTOR FORM

Gauss’s law, given in words by Eq. 1.3(3), may be writ%en
§;DcosedS=q | )
S |

The symbol §; denotes the integral over a surface and ch course cannot be performed
until the actual surface is specified. It is in general a double integral. The circle on the
integral sign is used if the surface is closed. |

The surface integral can also be written in a still more compact form if vector notation
is employed. Define the unit vector normal to the surface under consideration, for any
given point on the surface, as fi. Then replace D .cos 8 by D - . This particular product
of the two vectors D and fi denoted by .the dot between the two is known as the dot
product of two vectors, or the scalar product, since it rfasults by definition in a scalar
quantity equal to the product of the two vector magmtudes and the cosine of the angle
between them. Also, the combination f dS is frequently]abbrewated further by writing
it dS. Thus the elemental vector dS, representing the element of surface in magnitude
and orientation, has a magnitude equal to the magnitude of the element dS under con-
sideration and the direction of the outward normal to the surface at that point. The
surface integral in (1) may then be written in any of the|equivalent forms:

%Dcos@dS=j€D~ﬁdS=j€D-dS 2
s s s

All of these say that the normal component of the vector D is to be integrated over the
general closed surface S. ‘ x
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If the charge inside the region is given as a density of charge per unit volume in
coulombs per cubic meter for each point of the region, the total charge inside the region
must be obtained by integrating this density over the volume of the region. This is
analogous to the process of finding the total mass inside a region when the variable
mass density is given for each point of a region. This process may also be denoted by
a general integral. The symbol [}, is used to denote this, and, as with the surface integral,
the particular volume and the variation of density over that volume must be specified
before the integration can be performed. In the general case, it is performed as a triple
integral.

Gauss’s law may then be written in this notation:

§D'd5=fpdV 3)
s v

Although the above may at first appear cryptic, familiarity with the notation will im-
mediately reveal that the left side is the net electric flux out of the region and the right
side is the charge within the region.

4

Example 1.5
ROUND BEAM OF UNIFORM CHARGE DENSITY

Consider the circular cylinder of uniform charge density p and infinite length shown in
Fig. 1.5. A region of integration is taken in the form of a prism of square cross section.
We will demonstrate the validity of (3), utilizing the fact that D has only a radial
component. The right side of (3) is

I rb/2 b/2
j pdV = fdzj dyj pdx = Ib°p 4)
v 0 /2

—b/2 -b

FiG. 1.5 Square cylindrical region of integration in a circular cylinder of free charge.
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At any radius, D, can be found as in Sec. 1.4 to be 3
_(@p _1p

Y 2
To do the surface integration on the left side of (3), welnote that D - dS = D, dx dz

cos 6, that cos 6 = b/2r, and that the four sides make equal contributions to the integral.
Thus !

®)

r

b/2
§D dS—4fdzf DCOSG[dx—lb2 ©)
b/2

and from (6) and (4) we see that (3) is satisfied. Problem 1.5b contains a similar situ-
ation, but is somewhat complicated by having the charge density dependent upon radius.

l

1.6 TUBES OF FLUX: PLOTTING OF FIELD LINES

For isotropic media, the electric field E is in the same direction as flux density D. A
charge-free region bounded by E or D lines must then have the same flux flowing
through it for all selected cross sections, since no flux can flow through the sides parallel
with D, and Gauss’s law will show the conservation of flux for this source-free region.
Such a region, called a flux tube, is illustrated in Fig.i" 1.6a. Surface S; follows the
direction of D, so there is no flow through S3. That flowing in S; must then come out
S, if there are no internal charges. These tubes are analogous to the flow tubes in the
fluid analogy used in Sec. 1.3.

The concept of flux tubes is especially useful in makmg maps of the fields, and will
be utilized later (Sec. 1.19) in a useful graphical field-mapping technique. We show in
the following example how it may be used to obtain field lines in the vicinity of parallel
line charges.

Examplie 1.6 !
FLUX TUBES AND FIELD LINES ABOUT PARALLEL L|NES OF OpPPOSITE CHARGE

To show how field lines may be found by constructing ﬂux tubes, we use, as an example,
two infinitely long, parallel lines of opposite charge. It i is obvious from symmetry that
the plane in which the two charge lines lie will contm&l D lines and hence can be a
boundary of a flux tube. We introduce the flux functionj

¢:=LD-dS | )



1.6 Tubes of Flux: Plotting of Field Lines 15

S3

Sy

5

Fic. 1.6a Tube of flux.

which measures the flux crossing some chosen surface. For example, suppose S is the
cross-hatched surface in Fig. 1.6b. First, let the angles «; and a, shrink to zero so §
also vanishes. Then the flux function will be zero along the plane of the lines of charge.
(The surface S also could be chosen in some other way, making the flux function
different from zero on that plane. The resulting additive constant is arbitrary, so we
take it to be zero.) We get other flux tube boundaries by taking nonzero values of the
angles «; and «,. First we derive an expression for the flux passing between the ¢ =
0 plane and line L in Fig. 1.6b. Then paths will be formed along which L may be moved
while keeping the same flux between it and the iy = 0 surface. Moving L along such
a path therefore generates a surface which is the boundary of a flux tube of infinite
length parallel to L. The flux may be divided into the part from the positive line charge
and the part from the negative line charge, since the effects are superposable. The flux
from the positive line goes out radially so that the amount (per unit length) crossing S
is g,(et;/27). The flux passing radially inward toward the negative line charge through
S adds directly to that of the positive line charge and has the magnitude g,(a,/2). The
total flux per unit length crossing S is

@

Y= Y (a; + ay) 2)

Fic. 1.6b Construction of flux tubes about line charges.



16 Chapter 1 Stationary Electric Fields

FiG. 1.6¢c Tubes of flux between line: charges.

The surface generated by moving L in such a way as to keep ¢ constant is a circular
cylinder that passes through the charge lines with its axis in the plane normal to the
¢ = 0 line midway between the line charges. Figure 1.6c shows several flux tubes,
with the values of  indicating the amount of flux between the = O surface and the
one being considered, as o, is increased from zero to 24r. Note that as a path is taken
around one of the lines, the flux function goes from 0 to g,; the total flux per unit length
coming from a line charge is g,. It is clear from this example that the flux function
is not single-valued since it continues to increase as «; or a, increases; more flux lines
are crossed as motion about the line charge continues. We must therefore limit @, and
a, to the range 0 to 27r to ensure unique values for . ‘

Since the boundaries of the flux tubes lie along D vectors and D = ¢E, they also lie
along E vectors. Thus, by plotting flux tubes, we find the directions of the electric field
vectors surrounding the charges. There is a given amount of flux in each tube so the
flux density D, and therefore also E, become large wher;e the cross section of the tube
becomes small.

1.7 ENERGY CONSIDERATIONS: CONSERVATIVE PROPERTY
OF ELECTROSTATIC FIELDS

Since a charge placed in the vicinity of other charges experiences a force, movement
of the charge represents energy exchange. Calculation ‘of this requires integration of
force components over the path (line integrals). It will lbe found that the electrostatic
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system is conservative in that no net energy is exchanged if a test charge is moved
about a closed path, returning to its initial position.

Consider the force on a small positive charge Ag moved from infinity to a point P
in the vicinity of a system of positive charges: g, at 0,, ¢, at O,, g5 at 05, and so on
(Fig. 1.7a). The force at any point along its path would cause the particle to accelerate
and move out of the region if unconstrained. A force equal to the negative of that from
surrounding charges must then be applied to bring Ag from infinity to its final position.
The differential work done on Ag from g, in the system is the negative of the force
component in the direction of the path, multiplied by differential path length:

dau, = —F, - dl
Or, using the definition of the scalar product, the angle 6 as defined in Fig. 1.7a, and
the force as stated above, we write the line integral for total work related to g, as

JPQ‘ Agq, cos 6 dl
w 4rer?

PO,
U1=—f F,-dl = — o)

where r is the distance from g, to the differential path element dl at each point in the
integration. Since dl cos 6 is dr, the integral is simply

U - J‘PQl Aqth dr
L @ 4rer?

and similarly for contributions from other charges, so that the total work integral is

TR (T [
w 4mer? w  Amer? w  4mer?

Note that there is no component of the work arising from the test charge acting upon
itself. Integrating,

Agq, 4 Aqq, " Aqq;

= 2
4mePQ, 47mePQ, 4mePQ4 @)
E,
. P
dl
/
/
/
//r
°g
// Qi
Li %
@

FiG. 1.7a Integration path for force on test charge.
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Equation (2) shows that the work done is a function only of final positions and not
of the path of the charge. This conclusion leads to another: if a charge is taken around
any closed path, no net work is done. Mathematically this is written as the closed line
integral |

'

bE-a=0 3)

This general integral signifies that the component of electric field in the direction of
the path is to be multiplied by the element of distance along the path and the sum taken
by integration as one moves about the path. The circle through the integral sign signifies
that a closed path is to be considered. As with the designation for a general surface or
volume integral, the actual line integration cannot be performed until there is a speci-
fication of a particular path and the variation of E about that path.

In the study of magnetic fields and time-varying electric fields, we shall find corre-
sponding line integrals which are not zero. |

Example 1.7 !
DEMONSTRATION OF CONSERVATIVE PROPERTY

To illustrate the conservative property and the use of line integrals, let us take the line
integral (3) around the somewhat arbitrary path through a uniform sphere of charge
density p shown in Fig. 1.7b. The path is chosen, for simplicity, to lie in the x = 0

|

Fic. 1.7b  Path of integration (broken line) through electric field of sphere of uniform charge
to show conservative property.
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plane. The integrand E - dl involves electric field components E, and E.. The radial
electric field E, = pr/3g, is found from Eq. 1.4(7). The components are E, = E,(y/r)
and E. = E,(z/r) so E, = py/3g; and E, = pz/3&,. The integral (3) becomes

Ca by cy by
j€E~dl = L E.d: + | Eydy+ J’ E.dz + | E,dy

by
_rlZ
3gq( 2

by
} B O
by
The general conservative property of electrostatic fields is thus illustrated in this
example.
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1.8 ELECTROSTATIC POTENTIAL: EQUIPOTENTIALS

The energy considerations of the preceding section lead directly to an extremely useful
concept for electrostatics—that of potential. The electrostatic potential function is de-
fined as the work done per unit charge. Here we start generally and define a potential
difference between points 1 and 2 as the work done on a unit test charge in moving

from P, to P-,.
Py

®p, — Dp = — E-dl )
2 P
The conclusion of the preceding section that the work in moving around any closed
path is zero shows that this potential function is single-valued; that is, corresponding
to each point of the field there is only one value of potential.

Only a difference of potential has been defined. The potential of any point can be
arbitrarily fixed, and then the potentials of all other points in the field can be found by
application of the definition to give potential differences between all points and the
reference. This reference is quite arbitrary. For example, in certain cases it may be
convenient to define the potential at infinity as zero and then find the corresponding
potentials of all points in the field; for determination of the field between two conduc-
tors, it is more convenient to select the potential of one of these as zero.

If the potential at infinity is taken as zero, it is evident that the potential at the point
P in the system of charges is given by U of Eq. 1.7(2) divided by Ag, so

2al 92 qs
= + + + o 2
4mePQ,  4mePQ, 4wePQ; @
This may be written in a more versatile form as
o) = Y )

i=1 4’)T8Ri

where R; is the distance of the ith charge at r; from the point of observation at r, as
seen in Fig. 1.8a.
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Fic. 1.8a Potential of ¢,, g5, g3, - . - , g; is found at point P.
|
Ri=|r = vl = [ = x* + (v = 31+ @ = 2D @

Here x, y, and z are the rectangular coordinates of the point of observation and
x!, y, and z; are the rectangular coordinates of the ith charge.® Generalizing to the case
of continuously varying charge density,

_ [ p&)av
o = Jv 47meR ‘ ®)

The p(r') is charge density at point (x', y', z"), and the inteéral signifies that a summation
should be made similar to that of (2) but continuous over all space. If the reference for
potential zero is not at infinity, a constant must be added of such value that potential
is zero at the desired reference position. i

|
_ [ pHav'
o(r) = J’V 4meR * C. ©

It should be kept in mind that (2)—(6) were derived assumi‘ng that the charges are located
in an infinite, homogeneous, isotropic medium. If condu‘ctors or dielectric discontinu-
ities are present, differential equations for the potential (to be given shortly) are used
for each region.

We will see in Sec. 1.10 how the electric field E can be found simply from ®(r). It
is usually easier to find the potential by the scalar operations in (3) and (5) and, from
it, the field E than to do the vector summations discussed |111 Sec. 1.2. Such convenience
in electrostatic calculations is one reason for introducing/this potential.

In any electrostatic field, there exist surfaces on which the potential is a constant, so-

called equipotential surfaces. Since the potential is single-valued, surfaces for different

3 Throughout the text we use primed coordinates to designafe the location of sources and
unprimed coordinates for the point at which their fields are to be calculated,
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values of potential do not intersect. The pictorial representation of more than one such
surface in a three-dimensional field distribution is quite difficult. For fields that have
no variation in one dimension and are therefore called two-dimensional fields, the third
dimension can be used to represent the potential. Figure 1.8b shows such a representa-
tion for the potential around a pair of infinitely long, parallel wires at potentials ®, and
—®,. The height of the surface at any point is the value of the potential. Note that
lines of constant height or constant potential can be drawn. These equipotentials can
be projected onto the x—y plane as in Fig. 1.8c. In such a representation, the equipo-

(c)

FiG. 1.8 () Plot of a two-dimensional potential distribution using the third dimension to show
the potential. (¢) Equipotentials for the same potential system as in (b) plotted onto the x—y plane.
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tentials look like the contour lines of a topographic map and, in fact, measure potential
energy of a unit charge relative to a selected zero-potential point just as contours meas-
ure potential energy relative to some reference altitude, often sea level. It should be
kept in mind that these lines are actually traces in the x— y plane of three-dimensional
cylindrical equipotential surfaces.

We will discuss the boundary conditions on conductors in some detail in Sec. 1.14.
At this point it is sufficient to say that the electric fields inside of a metallic conductor
can be considered to be zero in electrostatic systems. Therefore, (1) shows that the
conductor is an equipotential region.

Example 1.8a
POTENTIALS AROUND A LINE CHARGE AND BETWEEN COAXIAL CYLINDERS

As an example of the relations between potential and electric field, consider first the
problem of the line charge used as an example in Sec. 1.4, with electric field given by
Eq. 1.4(3). By (1) we integrate this from some radius r, chosen as the reference of zero

potential to radius 7: '
’ " g dr l :
_f Erﬁz_f&_t:_ﬂm(.'_) €)
ro ro 2TEr 2me  \ry

0

Or this expression for potential about a line charge may be written
<D=—2—1nr+C ‘ ®)

Note that it is not desirable to select infinity as the reference of zero potential for the
line charge, for then by (7) the potential at any finite point would be infinite. As in (6)
the constant is added to shift the position of the zero potential.

In a similar manner, the potential difference between the coaxial cylinders of Fig. 1.4b

may be found: |
e g, dr b
(pa_q)b_.___._fu:q_[]h_ ©)
b 2mer  2me a

{
Example 1.8b
POTENTIAL OUTSIDE A SPHERICALLY SYMMEI’RIC CHARGE

We saw in Eq. 1.4(4) that the flux density outside a spherically symmetric charge Q is
= Q/4mr?. Using E = D/g, and taking the reference potential to be zero at in-
finity, we see that the potential outside the charge Q is the negative of the integral of



1.8 Electrostatic Potential: Equipotentials 23

PE, T dr from infinity to radius r:

" Qadr Y

- =
w dmegr;  4megr

() = —

(10)

Example 1.8¢c
POTENTIAL OF A UNIFORM DISTRIBUTION OF CHARGE
HAVING SPHERICAL SYMMETRY

Consider a volume of charge density p that extends from r = 0 to r = a. Taking
® = 0 atr = o, the potential outside a is given by (10) with Q@ = $wea’p, so

3
o) = L r=a (11)
3ggr
In particular, at r = a
D) = LP (12)
3gg

Then to get the potential at a point where r = a we must add to (12) the integral of the
electric field from a to r. The electric field is given as E, = pr/3g, (Ex. 1.7) and the
integral is

®¢) — Dl@) = — f P = 2@ - ) (13)
a 380 680
So the potential at a radius r inside the charge region is

o) =L B2 -2 r=a (14)
6gq

Example 1.8d
ELECTRIC DIPOLE

A particularly important set of charges is that of two closely spaced point charges of
opposite sign, called an electric dipole.

Assume two charges, having opposite signs to be spaced by a distance 28 as shown
in Fig. 1.84. The potential at some point a distance r from the origin displaced by an
angle 6 from the line passing from the negative to positive charge can be written as the
sum of the potentials of the individual charges:

1
D = i(—l— - —) (15)
dme\r, r_
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Fie. 1.9 (a) Parallel-plane capacitor with fringing fields. (b) Idealization.

the surface charge density p, on each plate. Since the fieldE = D/ is assumed uniform,
the potential difference ®, — @, is, by Eq. 1.8(1),

d

@, — ®, = 22 @)
£

The total charge on each plate of area A is p,A so (1) and (§2) give the familiar expression
eA I

== F ©)

In practice, (3) is modified by the fringing fields, whlchy are increasingly important as
the ratio of plate spacing to area is increased.

Next consider a capacitor made of coaxial, circular cyll‘ndncal electrodes. We assume
that fields are only radial and neglect any fringing at the ends if it is of finite length.
The charge on each conductor is distributed uniformly in this idealization, as required
by symmetry, with the total charge per unit length being g,. The potential difference
found from the field produced by this charge is given b'y Eq. 1.8(9). The capacitance

per unit length is thus
2e
In(b/a)
where b and a are the radii of larger and smaller conductors, respectively.
Finally, consider two concentric spherical conductors of radii a and b, with b > a,

separated by a dielectric €. Using symmetry, Gauss’s law‘ and E = D/g, it is clear that
at any radius

F/m 4

0 i

4aer?

E, = (5)

\
where Q is the charge on the inner conductor (equal in mhgnimde and opposite in sign

t
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to the charge on the inside of the outer sphere). Integration of (5) between spheres gives
@, — @, and this, substituted into (1), yields

C = 4me _ Ameab
C (/@) - (1/b) b —a

The flux tubes in these three highly symmetric structures are very simple, being
bounded by parallel surfaces in the first example and by cylindrically or spherically
radial surfaces in the last two. In Sec. 1.21 we will see a way of finding capacitance
graphically for two-dimensional structures of arbitrary shape in which the flux tubes
have more complex shapes.

Capacitance of an isolated electrode is sometimes calculated; in that case, the flux
from the charge on the electrode terminates at infinity and the potential on the electrode
is taken with respect to an assumed zero at infinity. More extensive considerations of
capacitance are found in Sec. 4.9.

(©)

Differential Forms of Electrostatic Laws

1.10  GRADIENT

We have looked at several laws of electrostatics in macroscopic forms. It is also useful
to have their equivalents in differential forms. Let us start with the relation between
electric field and potential. If the definition of potential difference is applied to two
points a distance dl apart,

dd = —E-dl €]
where dl may be written in terms of its components and the defined unit vectors:
dl = Xdx + §dy + 24z )
We expand the dot product:
dd = —(E,dx + E,dy + E, dz)

Since @ is a function of x, y, and z, the total differential may also be written

L) o P
dd = —dx + —dy + —dz
ox dy dz
From a comparison of the two expressions,
ad O] o
E. = —-— E, = - — E. = - — (3)

ax’ Y ay’ : oz
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SO |
a® 9 ad
= (= +§J— +2— 4
E <x6x+yay+zaz) “4)
or
E= —grad® 5)

where grad @, an abbreviation of the gradient of @, is a vector showing the direction
and magnitude of the maximum spatial variation of the scalar function ®, at a point in
space. "

Substituting back in (1), we have

d® = (grad @) - dl 6)

Thus the change in ® is given by the scalar product of the gradient and the vector dl,
so that, for a given element of length dl, the maximum value of d® is obtained when
that element is oriented to coincide with the direction of| the gradient vector. From (6)
it is also clear that grad ® is perpendicular to the equipotentials because d® = 0 for
dl along an equipotential.

The analogy between electrostatic potential and gravitational potential energy dis-
cussed in Sec. 1.8 is useful for understanding the gradient. It is easy to see in Fig. 1.8b
that the direction of maximum rate of change of potential is perpendicular to the
equipotentials (which are at constant heights on the potential hill).

If we define a vector operator V (pronounced del)

d . d

Ayl .0 9
v =xax~l-yay-f-zazt @)

then grad ® may be written as V® if the operation is int%cxpreted as

P oo 00 ®
ox ay 0z
and

E=—gad®2 -vo ©)

The gradient operator in circular cylindrical and spherical coordinates is given on the
inside front cover.

Exampie 1.10 i
ELECTRIC FIELD OF A DIPOLE

|
As an example of the use of the gradient operator, we will find an expression for the
field around an electric dipole. The potential for a dipole is given in Sec. 1.8 in spherical
coordinates so the spherical form of the gradient operator is selected from the inside
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front cover.

ab o1 G
Pl P

or r df@  rsin 8 d¢
Substituting Eq. 1.8(16) and noting the independence of ¢, we get

VO =

g cos § équinG

¥E e wer? 2rrer?
Then from (9) the electric field is
8¢ | . . 5in @
E = g (r cos B + O 5 ) (10)

1.11  THE DIVERGENCE OF AN ELECTROSTATIC FIELD

The second differential form we shall consider is that of Gauss's law. Equation 1.5(3)
may be divided by the volume element AV and the limit taken:
D - dS dv
e, BDO8 o i, BT D
AV—0 AV AV—D .&V
The right side is, by inspection, merely p. The left side is the outward electric flux

per unit volume. This will be defined as the divergence of flux density, abbreviated div
D. Then

divD = p (2)

This is a good place to comment on the size scale implicit in our treatment of fields
and their sources; the comments also apply to the central set of relations, Maxwell's
equations, toward which we are building. In reality, charge is not infinitely divisible—
the smallest unit is the electron. Thus, the limit of AV in (1) must actually be some
small volume which is still large enough to contain many electrons to average out the
granularity. For our relations to be useful, the limit volume must also be much smaller
than important dimensions in the system. For example, to neglect charge granularity,
the thickness of the depletion layer in the semiconductor in Ex. 1.4a should be much
greater than the linear dimensions of the limit volume, which, in turn, should be much
greater than the average spacing of the dopant atoms. Similarly the permittivity € is an
average representation of atomic or molecular polarization effects such as that shown
in Fig. 1.3c. Therefore, when we refer to the field at a point, we mean that the field is
an average over a volume small compared with the system being analyzed but large
enough to contain many atoms. Analyses can alsc be made of the fields on a smaller
scale, such as inside an atom, but in that case an average permittivity cannot be used.
In this book, we concentrate on situations where p, £, and other quantiticsage.averages
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over small volumes. There are thin films of current practical interest which are only a
few atoms thick and semiconductor devices such as that of Ex. 1.4a where these con-
ditions are not well satisfied, so that results from calculations using p and ¢ as defined
must be used with caution.

Now let us return to seeking an understanding of (2). Consider the infinitesimal
volume as a rectangular parallelepiped of dimensions Ax, Ay, Az as shown in Fig.
1.11a. To compute the amount of flux leaving such a volume element as compared with
that entering it, note that the flux passing through any face of the parallelepiped can
differ from that which passes through the opposite face only if the flux density perpen-
dicular to those faces varies from one face to the other. If the distance between the two
faces is small, then to a first approximation the difference in any vector function on the
two faces will simply be the rate of change of the function with distance times the
distance between faces. According to the basis of calculus, this is exactly correct when
we pass to the limit, since the higher-order differentials are then zero.

If the vector D at the center x, y, z has a component D (x), then

Ax) Ax 3,9
Dx(x + 2 ) =D (x) + 5 o
A Ax 3D (x) 2
X X J _tx
D< - 7) =D -~

In this functional notation, the arguments in parentheses show the points for evaluating
the function D,. When not included, the point (x, y, z) will be understood. The flux
flowing out the right face is Ay Az D (x + Ax/2), and that flowing in the left face is
Ay Az D (x — Ax/2), leaving a net flow out of Ax Ay Az(aD,/dx), and similarly for
the y and z directions. Thus the net flux flow out of the parallelepiped is

Ax Ay Az

aD aD. oD,
X4+ Ax Ay Az —2 + Ax Ay Az —=
ox ay , 0z

Az

[}
Ay| (x, 9, 2)

Ax

z

Fic. 1.11a Volume element used in div D derivation.
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By Gauss’s law, this must equal p Ax Ay Az. So, in the limit,

o0x dy 0z P

An expression for div D in rectangular coordinates is obtained by comparing (2) and (4):

oD, 9D, 4D,
divD = — + 2 4+ =

5
ox ay 0z ©)

If we make use of the vector operator V defined by Eq. 1.10(7) in (4), then (5) indicates
that div D can conveniently be written as V - D. It should be remembered that V is not
a true vector but rather a vector operator. It has meaning only when it is operating on
another quantity in a defined manner. Summarizing,

v-p2dvp = %-I-G—D::p ©)
ox dy 0z

The divergence is made up of spatial derivatives of the field, so (6) is a partial
differential equation expressing Gauss’s law for a region of infinitesimal size. The
physical significance of the divergence must be clear. It is, as defined, a description of
the manner in which a field varies at a point. It is the amount of flux per unit volume
emerging from an infinitesimal volume at a point. With this picture in mind, (6) seems
a logical extension of Gauss’s law. In fact (6) can be converted back to the large-scale
form of Gauss’s law through the divergence theorem, which states that the volume
integral of the divergence of any vector F throughout a volume is equal to the surface

integral of that vector flowing out of the surrounding surface,

V-FdV:3gF~dS @)
v s

Although not a proof, this is made plausible by considering Fig. 1.11b. The divergence
multiplied by volume element for each elemental cell is the net surface integral out of

N
™
\\

S

\\
\\F

Fie. 1.11b Solid divided into subvolumes to illustrate the divergence theorem.
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that cell. When summed by integration, all internal contributions cancel since flow out
of one cell goes into another, and only the external lsurface contribution remains.
Applications of (7) to (6) with F = D gives |

3(>SD-ds=fvv-de=ﬂvpdV @)

which is the original Gauss’s law. |

It will be useful to have expressions for the divergenceland other operations involving
V in other coordinate systems for simpler treatment of problems having corresponding
symmetries. Let us, as an example, develop here the fdivergence of D in spherical
coordinates.* We use the left side of (1) as the definition of div D and apply it to the
differential volume shown in Fig. 1.11c. We will find first the net radial outward flox
from the volume. Both the radial component D, and the element of area r* df sin 6 d¢
change as we move from 7 to  + dr. Thus the net flux flow out the top over that in at
the bottom is

aD
Ay, = (r + dr)* sin 6 d6 do (D, + =t dr) — 2 sin 9 d6 d¢D,

To first-order differentials, this leaves

oD
dy, = r?sin 0 d6 do a'r dr + 2r drsin 6 d@ d¢ D,

3
sin 0 dr df dep — (rD,)
"

Similarly for the 0 and ¢ directions,

d A
dify = db — (D1 sin 6.d¢ dr) = r dr df dp — (sin 6 Dy)

a¢

The divergence is then the total di divided by the eleme;nt of volume
ay, + diy + dis,

? 9Dy
dyy = dp — (Dyrdbdr) = rdrdfde ng

V-D =
r? sin 0 dr df d¢ | )
19 1 9 ‘ 1 0D,

VD ==—(¢D,) + —— — (si —=2
2 U0 g eae<smeée)+;-sin6 ¢

For the corresponding expression in circular cylindricaﬂ coordinates, see inside front
cover and Prob. 1.11c.

4 Note that here, as with other curvilinear coordinate sysféms, it is not the scalar product
of the gradient operator and the vector in spherical coordinates, but must be obtained
from the basic definition given by (1) and (2).
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Fic. 1.11¢ Element of volume in spherical coordinates.

Example 1.11
UNIFORM SPHERE OF CHARGE

We will show an example of the application of (6) using a sphere of charge of uniform
density p having a radius a with divergence written in spherical coordinates. Since the
spherical symmetry of the charge region leads to D, = D, = 0, the last two terms of
(9) vanish. We use the value of D, = rp/3 from Eq. 1.4(7) for the region inside the

charge sphere and obtain
19 S pr
V . S S — =
D= [o )<3 )] p (10)

For the region outside the sphere we use D,(r) = a* p/3r? from Eq. 1.4(8) to show

that
_1af , a’p _
V:D = 2o [(l )(3’_2)] =0 1D

This example shows that divergence is zero ouiside the charge region but equal to
charge density within it. The same result is obtained if one uses divergence expressed
in rectangular coordinates or other coordinates not so natural to the symmetry (Prob.
1.11d).

1.12 LAPLACE’'S AND POISSON’S EQUATIONS

The differential relations of the two preceding sections allow us to derive an important
differential equation for potential. Differential equations can be applied to problems
more general than those solved by symmetry in the first part of the chapter and it is
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often convenient to work with potential as the dependent variable. This is because
potential is a scalar and because the specified boundary conditions are often given in
terms of potentials.

If the permittivity & is constant throughout the region, the substitution of E from
Eq. 1.10(5) in Eq. 1.11(6) with D = ¢E yields
div(grad @) = V - VO = —f
But, from the equations for gradient and divergence in rectangular coordinates [Egs.
1.10(7) and 1.11(6)],

PP PP PO

V-Vd — + — 1
x> ay? 07> @
so that
’d PP D p
— + + = —= 2
x?r  9y? az% € @

This is a differential equation relating potential variation at any point to the charge
density at that point and is known as Poisson’s equation. It is often written

ve = -2 3)

& 1
where V?® (del squared of @) is known as the Laplacian of ®.
V2 & V- Vd = div(grad|®) @)
In the special case of a charge-free region, Poisson’s equation reduces to
PO PP PP

3x2+ay2+§=0

or
V20 = 0 )

1

which is known as Laplace’s equation. Although illustrated in its rectangular coordinate
form, V2 can be expressed in cylindrical or spherical coordinates through the relations
given on the inside front cover.

Any number of possible configurations of potential surfaces will satisfy the require-
ments of (3) and (5). All are called solutions to these equations. It is necessary to know
the conditions existing around the boundary of the region to select the particular solution
which applies to a given problem. We will see in Sec. 1.17 a proof of the uniqueness
of a function that satisfies both the differential equation and the boundary conditions.

Quantities other than potential can also be shown to satisfy Laplace’s and Poisson’s
equations, both in other branches of physics and in other parts of electromagnetic field
theory. For example, the magnitudes of the rectangular components of E and the com-
ponent E, in cylindrical coordinates also satisfy Laplace’s equation.
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A number of methods exist for solution of two- and three-dimensional problems with
Laplace’s or Poisson’s equation. The separation of variables technique is a very general
method for solving two- and three-dimensional problems for a large variety of partial
differential equations including the two of interest here. Conformal transformations of
complex variables yield many useful two-dimensional solutions of Laplace’s equation.
Increasingly important are numerical methods using digital computers. All these meth-
ods are elaborated in Chapter 7. Examples for this chapter, after discussion of boundary
conditions, will be limited to one-dimensional examples for which the differential equa-
tions may be directly integrated. These show clearly the role of boundary and continuity
conditions in the solutions.

1.13 STATIC FIELDS ARISING FROM STEADY CURRENTS

Stationary currents arising from dc potentials applied to conductors are not static be-
cause the charges producing the currents are in motion, but the resulting steady-state
fields are independent of time. Quite apart from the question of designation, there is a
close relationship to laws and techniques for the fields arising from purely static charges.

We consider ohmic conductors for which current density is proportional to electric
field E through conductivity’ o siemens per meter (S/m):

J = oE 1)

Such a relationship comes from internal “collisons” and is discussed more in Chapter
13. Since the electric field is independent of time, it is derivable from a scalar potential
as in Sec. 1.10, so

J = —-oVd 2)

For a stationary current, continuity requires that the net flow out of any closed region
be zero since there cannot be a buildup or decay of charge within the region in the
steady state,

jg J-dS =20 3)
s
or in differential form,
V-J=0 C))
Substitution of (2) in (4), with o taken as constant, yields
V-Vo 2 v =0 )

Thus potential satisfies Laplace’s equation as in other static field problems (Sec. 1.12).
In addition to the boundary condition corresponding to the applied potentials, there is

5 The Sl unit for conductivity is siemens per meter (5/m), but older literature sometimes uses

mho as the conductivity unif.
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a constraint at the boundaries between conductors and insulators since there can be no
current flow across such boundaries. Referring to (2), this requires that for such
boundaries, on the conductor side,

l
ad ‘
— =9 I 6
on ©

where n denotes the normal to such boundaries. Continuity relations between different

conductors are considered in the following section.
\

1.14 BOUNDARY CONDITIONS IN ELECTROSTATICS

Most practical field problems involve systems'contajmfxg more than one kind of ma-
terial. We have seen some examples of boundaries between various regions in the
examples of earlier sections, but now we need to develop these systematically to utilize
the differential equations of the preceding sections.

Let us consider the relations between normal flux density components across an
arbitrary boundary by using the integral form of Gauss’s law. Consider an imaginary
pilibox bisected as shown in Fig. 1.14a by the interface between regions 1 and 2. The
thickness of the pillbox is considered to be small enough that the net flux out the sides
vanishes in comparison with that out the flat faces. If we assume the existence of net
surface charge p, on the boundary, the total flux out of \the box must equal p; AS. By
Gauss’s law,

I

D,; AS — D,, AS = p, AS

nl

Fic. 1.14a Boundary between two difféerent media.
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or
Dnl - Dn2 = Ps M

where AS is small enough to consider D,, and p, to be uniform.

A second relation may be found by taking a line integral about a closed path of length
Al on one side of the boundary and returning on the other side as indicated in Fig.
1.14a. The sides normal to the boundary are considered to be small enough that their
net contributions to the integral vanish in comparison with those of the sides parallel
to the surface. By Eq. 1.7(3) any closed line integral of electrostatic field must be zero:

§E~d1=E”Al—E,2A/=O
or
E, =E, )

The subscript ¢ denotes components tangential to the surface. The length of the tangen-
tial sides of the loop is small enough to take E, as a constant over the length. Since the
integral of E across the boundary is negligibly small,

@1 = (I)Z (3)

across the boundary. Equations (1) and (2), or (1) and (3), form a complete set of
boundary conditions for the solution of electrostatic field problems.

Consider an interface between two dielectrics with no charge on the surface. From
(1) and Eq. 1.3(1).

€y Enl = & E112 (4)

It is clear that the normal component of E changes across the boundary, whereas the
tangential component, according to (2), is unmodified. Therefore the direction of the
resultant E must change across such a boundary except where either E, or E, are zero.
Suppose that at some point at a boundary between two dielectrics the electric field in
region 1 makes an angle 8, with the normal to the boundary. Thus, as seen in Fig.
1.14b,

31

Erp

Ey
02

£
2 Eng E;

Fie. 1.14b Vector relations among electric field components at a point on a boundary between
dielectrics (e, > &,).
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E ;
6, = tan~ ! =2 5
) E, | )
and
L E
6, = tan IE—Z 1 (6)
Then using (2) and (4) we see that
-1 82 l
g /

Let us now consider the boundary properties of conductors, as exemplified by a piece
of semiconductor with metallic contacts. The currents flowing in both the semiconductor
and the metallic contacts are related to the fields by the respective conductivities so
potential drops occur in them, as developed in Sec. 1.13.

At the interface of two contiguous conductors, the normal component of current
density is continuous across the boundary, because otherwise there would be a continual
buildup of charges there. The normal component of electric field is therefore discontin-
uous and given by

)
Enl - oy En?. T (8)
The argument used in dielectric problems for tangential components of electric field
also applies in the case of a discontinuity of conductxvuy so that tangential electric field
is continuous across the boundary.

In problems with metallic electrodes on a less conductive material such as a semi-
conductor, one normally assumes that the conductivitj of the metallic electrode is so
high compared with that of the other material that negligible potential drops occur in
the metal. The electrodes are assumed to be perfect conductors with equipotential sur-
faces. In this text we normally assume for dc problems that the electrodes in either
electrostatic or dc conduction problems are equ1potentxa]s and therefore the tangential
electric fields at their surfaces are zero.

Example 1.14
BOUNDARY CONDITIONS IN A DC CONDUCTION PROBLEM

The structure in Fig. 1.14c illustrates some of the points we have made about boundary
conditions. We assume that a potential difference is provided between the two metallic
electrodes by an outside source. The electrodes are considered to be perfect conductors
and, therefore, equipotentials. The space directly between them is filled with a layer of
conductive material having conductivity o and permittivity . The space surrounding
the conductive system is filled with a dielectric having permittivity &, and o = 0.
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Fie. 1.14c Structure involving both dc conduction and static fields in a dielectric to illustrate
boundary conditions.

The normal component of the current density at the conductor—dielectric interface
must be zero since the current in the dielectric is zero. This follows formally from (8)
using zero conductivity for the dielectric. Therefore, since the electric field is J/o the
normal component of electric field inside the conductor must be zero. Then the electric
fields inside the conductor at the boundaries with the dielectric are wholly tangential.
Since the electrodes are assumed to be equipotentials, the tangential field there is zero
and the field lines are perpendicular to the electrode surfaces.

It is clear that since there is an electric field in the conductive medium and it has a
permittivity, there is also a flux density following the same paths as the current density.
The flux must terminate on charges so there will be charges on the electrode-
to-conductor boundary.

The electric field in the dielectric region terminates on charges both on the perfectly
conducting electrodes and on the sides of the other conductive medium. On the bound-
ary of the imperfect conductor there is a tangential component and also surface charges,
so the field makes an oblique angle with the conductor surface.
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1.15  DIRECT INTEGRATION OF LAPLACE'S EQUATION:
FIELD BETWEEN COAXIAL CYLINDERS WITH TWO DIELECTRICS

The first simple example of Laplace’s equation we will take is that of finding the
potential distribution between two coaxial conducting cylinders of radii @ and ¢ (Fig.
1.15), with a dielectric of constant g; filling the region between a and b, and a second
“dielectric of constant &, filling the region between b and c. The inner conductor is at
potential zero, and the outer at potential V;,. Because of the symmetry of the problem,
the solution could be readily obtained by using Gauss’s law as in Example 1.4b, but
the primary purpose here is to demonstrate several processes in the solution by
differential equations.

The geometrical form suggests that the Laplacian V?® be expressed in cylindrical
coordinates (see inside front cover), giving for Laplace!s equation

oo 12 (,30), 10 2D
Vo = ( >+’.26¢2+azz_

roor
It will be assumed that there is no variation in the axial (z) direction, and the cylindrical
symmetry eliminates variations with angle ¢. Equation (1) then reduces to

1d dd®
;;C;)w @

?
ar

0 )

Note that in (2) the derivative is written as a total derivative, since there is now only
one independent variable in the problem. Equation (2) may be integrated directly:

do
r—- =G | €)
Integrating again, we have

Fie. 1.15 Coaxial cylinders with two dielectrics.
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This has been labeled ®, because we will consider that the result of (4) is applicable
to the first dielectric region (a < r < b). The same differential equation with the same
symmetry applies to the second dielectric region, so the same form of solution applies
there also, but the arbitrary constants may be different. So, for the potential in region
2 (b <r <), let us write

&, =Cylnr + C, 5)
The boundary conditions at the two conductors are:

(@ &, =0atr =a
(b) &,

Voatr =c

In addition, there are continuity conditions at the boundary between the two dielectric
media. The potential and the normal component of electric flux density must be
continuous across this charge-free boundary (Sec. 1.14):

© @ = Dyatr = b
(@) D,, = D,atr = b, or g (d®,/dr) = &, (dD,/dr) there.

The application of condition (a) to (4) yields

C,=—-C/ lna ©)
The application of (b) to (5) yields
C,=Vy—-Cylnc )
Condition (c) applied to (4) and (5) gives
Cilnb+C,=C;Inb + C4 ®)
And condition (d) applied to (4) and (5) gives
g, C, = &, C3 ©)

Any one of the constants, as C,, may be obtained by eliminating between the four
equations, (6) to (9):

Yo
C, =
"' In(b/a) — (g,/&,) In(b/c)
The remaining constants, C,, C5, and C,, may be obtained from (6), (9), and (7),

respectively. The results are substituted in (4) and (5) to give the potential distribution
in the two dielectric regions:
Vo In(r/a)

= nora + @ /oy T b (D

(10)

= V0|: (g1/€5) In(c/r)

1 - In(b/a) + (g,/&,) lrl(c/b):| b<r<c (12)
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It can be checked that these distributions do satisfy Laplace’s equation and the boundary
and continuity conditions of the problem. Only in such simple problems as this will it
be possible to obtain solutions of the differential equation by direct integration, but the
method of applying boundary and continuity conditions to the solutions, however ob-
tained, is well demonstrated by the example.

1.16  DIRECT INTEGRATION OF POISSON'S EQUATION:
THE PN SEMICONDUCTOR JUNCTION

The pn semiconductor junction is an important practical example in which properties
can be found by direct integration of Poisson’s equation. Figure 1.16a shows a simpli-
fied pn junction. The basic semiconductor is typically a valence 4 material such as
silicon (or a compound semiconductor such as gallium arsenide that behaves much the
same). The n region of the figure has been ‘‘doped’’ with valence 5 impurity atoms
such as phosphorus (donors), which although electrically neutral in themselves, have
more electrons than needed for bonding with adjacent silicon atoms and so contribute
electrons which can move relatively freely about the material. The p region of the figure
has valence 3 impurities such as boron (acceptors) which have fewer electrons than
needed for bonding with adjacent silicon atoms. These too are electrically neutral in
themselves, but leave holes that move from atom to atom with electric fields or other
forces much like small positive charges. Aithcugh the transition between p and 7 regions
must be over some finite region, we assume an idealized model in which it is abrupt—
a step discontinuity. ‘

When the junction is formed, the excess electrons in the n-type region at first diffuse
into the p-type side. The holes diffuse to the n-type side. The electrons flowing into the
p-type side fill the vacancies in the acceptor bonds, causing them to become negatively
charged. (Remember that they were originally electrically neutral). Likewise, the holes
moving into the n-type side are filled by the excess electrons there. The result is a zone
near the junction in which there is a net negative charge density in a region on the
p-type side and a net positive charge density on the n-type side called a depletion region,
as in the metal—semiconductor junction of Sec. 1.4. The density on the n-type side is
eNp, since each of the donor atoms has been stripped of one electron. The density on
the p-type side is —eN, since each acceptor atom has one additional electron. The
widths of the zones stabilize when the potential arising in the charge regions is sufficient
to prevent further diffusion. Outside the charged regions, the semiconductors are neu-
tral. No fields exist there in the equilibrium situation that we shall examine; if a field
did exist it would cause motion of the charges and violate the assumption of equilibrium.
The regions of charge are shown (not to scale) in Fig. 1.165.

One can deduce the form of the gradient of potential d®/dx = —E, = —D,/s
from Gauss’s law as was done in Ex. 1.4a for the metal-semiconductor contact. We
have just argued that E, is zero outside the charge regions (x < —d, and x > d,). All
the flux from the positive charges in 0 < x < d,, must therefore end on the negative
charges in —d, < x < 0. This determines the relation between d, and d, in terms of
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Fic. 1.16 (a) pn diode showing regions of uncompensated charge. (b) Charge density in the
diode. (c) Potential gradient. (d) Potential.

the given values of N, and N,. The flux density D, is negative and its magnitude
increases linearly from x = —d, to x = 0 since the charge density is taken to be
constant. It then falls linearly to zero between x = 0 and x = d,,. The gradient therefore
takes the form shown in Fig. 1.16¢. The potential is the integral of the linearly varying
gradient so it has the square-law form in Fig. 1.16d.

Now let us directly integrate Poisson’s equation to get the complete analytic forms.
The boundary conditions on the integration are that the gradient is zero at x = —d,
and at d,. The potential may be taken arbitrarily to have its zero at x = —d,,. Spe-
cializing Poisson’s equation 1.12(3) to one dimension and substituting for charge
density the value —eN, for the region —d, < x <0, we have

a*® eNy
d®> e

@
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The permittivity ¢ is not appreciably affected by the dolfaant, at least for low-frequency

considerations. Integrating (1) from x = —d,, to an arbitrary x = 0 making use of the
zero boundary condition on the gradient at x = —d,, gives
do N,
i P YA @
dx |,

Integrating a second time taking ®(—d,) = O gives the potential for —d, < x = 0 as

) = S8 6+ 4,7 )
The gradient and potential evaluated at x = O are
i
o) = % df, )

These constitute the boundary conditions for the integration in the region 0 =< x = d,,.
Poisson’s equation for this region differs from (1) in the choice of charge density:

da*® eN, !
== ©)
x* €
Integrating (6) with the boundary condition (4) gives
D
a0 _ ey My, -
dx|. £ £

Then using the condition that the total positive charge must equal the total negative
charge and therefore that N, = N,(d, /d.,), (7) can be put in the form

d eN,d '
2 _ A (1 _ i) (8)
& d,

dx |,
which is seen to be zero at x = d,,, as expected from Gauss’s law as discussed above.
Integrating (8) with the boundary condition (5), we find

eNnd? x x2
D(x) = Pl1+2= -
® = ( 4, dd, ©)
The maximum value of the potential is reached at x ={d,:
eN,d? N
AD = Bd) = —2 (1 + =2 (10)
2g Np

Note that distance d,, in (10) is not immediately known. Since the potential barrier arises
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to stop the diffusion of the charge carriers, it is expected that diffusion must also be
considered. Diffusion theory reveals that the height of the potential barrier (10) is

T (MM
A = ol [AZD] (11)

e 1;

where kg is Boltzmann’s constant, N, and Ny, are acceptor and donor doping densities,
respectively, and »; is the electron density of intrinsic (undoped) silicon, which is about
1.5 X 10" electrons/cm® at T = 300 K. Once A® is calculated, d, can be found from
(10) and all quantities in the field and potential expressions are then known.

1.17  UNIQUENESS OF SOLUTIONS

It can be shown that the potentials governed either by the Laplace or Poisson equation
in regions with given potentials on the boundaries are unique. With normal derivatives
of potential (or, equivalently, charges) specified on the boundaries, the potential is
unique to within an additive constant. Here we will prove the theorem for a charge-
free region with potential specified on the boundary. The proofs of the other parts of
the theorem are left as problems.

The usual way to demonstrate uniqueness of a quantity is first to assume the contrary
and then show this assumption to be false. Imagine two possible solutions, ®, and ®,.
Since they must both reduce to the given potential along the boundary,

b, -P,=0 @)
along the boundary surface. Since they are both solutions to Laplace’s equation,
V2@, = 0 and V?®, = 0
or
Vi@, — ®,) =0 )

throughout the entire region.
In the divergence theorem, Eq. 1.11(7), F may be any continuous vector quantity. In
particular, let it be the quantity

((D‘ - @2)V((D1 - @2)
Then

fVV (D, = PV(@, — D) dV = i (P, — ®,HV(DP, — D,)] - dS

From the vector identity

div(pA) = ¢div A + A - grad ¢
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the equation may be expanded to E
J‘ (@1 - ®2)V2(®1 - ‘Dz) dV + J‘ [V(¢1 - (1)2)]
§4 (@1 - @2)7(@1 @2) * dS

The first integral must be zero by (2); the last integral must be zero, since (1) holds
over the boundary surface. There remains ‘
|
\
V@, — ®,)?adV =0 €)]
v

The gradient of a real scalar is real. Thus its square can only be positive or zero. If its
integral is to be zero, the gradient itself must be zero:

V@, — ®,) =0 | @)
or |
(@, - ®,) = constanlt ®)

This constant must apply even to the boundary, where we know that (1) is true. The
constant is then zero, and ®, — ®, is everywhere zer;o which means that @, and ®,
are identical potential distributions. Hence the proof of uniqueness: Laplace’s equation
can have only one solution which satisfies the bounda.ry conditions of the given region.
If by any method we find a solution to a field problem that fits all boundary conditions
and satisfies Laplace’s equation, we may be sure it is the only one.

|
|

Special Techniques for Electrosi,tatic Problems

1.18 THE USE OF IMAGES
The so-called method of images is a way of finding th}e fields produced by charges in
the presence of dielectric® or conducting boundaries with certain symmetries. Here we
concentrate on the more common situations, those with conducting boundaries. (But
see Prob. 1.18d.) ‘

¢ W, R. Smythe, Static and Dynamic Electricity, HemispTere Publishing Co., Washington,
DC., 1989.



1.18 The Use of Images 47

Fic. 1.18a Image of a point charge in a conducting plane. The field lines shown are for the
charge ¢ with the conductor.

Example 1.18a
POINT IMAGE IN A PLANE

The simplest case is that of a point charge near a grounded’ conducting plane (Fig.
1.18a). Boundary conditions require that the potential along the plane be zero. The
requirement is met if in place of the conducting plane an equal and opposite image

charge is placed at x = —d. Potential at any point P is then given by
1
®=— (- i,)
4me \r r )
q

= ——{l(x —d? +y* + 2172 = [(x + d)* + y* + 2712
4qre

7 Use of the term grounded implies a source for the charge that builds up on the plane.
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This reduces to the required zero potential along the plane x = 0, so that (1) gives the
potential for any point to the right of the plane. The expression of course does not apply
for x < 0, for inside the conductor the potential must be everywhere zero.

If the plane is at a potential other than zero, the value of this constant potential is
simply added to (1) to give the expression for potential at any point for x > 0.

The charge density on the surface of the conducting plane must equal the normal
flux density at that point. This is easily found by using‘!
p, =D, =eE = —&— @
x=0

Substituting (1) in (2) and performing the indicated differentiation gives

Ps

d 5, _
= —Zq—w(d'-!-y'-l-zz 3/2 3)

Analysis of (3) shows that the surface charge density has its peak valueaty = z = 0,
with circular contours of equal charge density centered about that point. The density
decreases monotonically to zero as y and/or z go to infinity. One application of the
image method is in studying the extraction of electrons from a metallic surface as in
the metal-semiconductor surface shown in Fig. 1.4a.

1
\

Example 1.18b
IMAGE OF A LINE CHARGE IN A PLANE
|
If there is a line charge of strength g, C/m parallel to a conducting plane and distance
d from it, we proceed as above, placing an image line charge of strength —gq, at x =
—d. The potential at any point x > 0 is then

S/ L SO /R ) il
®= "o m(;-’) 4e Inl:(x —dy + yz] “

i
'
!

Example 1.18¢
IMAGE OF A LINE CHARGE IN A| CYLINDER
|
For a line charge of strength g, parallel to the axis of a conducting circular cylinder,
and at radius r,, from the axis, the image line charge of strength — g, is placed at radius
r = a?/ r,, Where a is the radius of the cylinder (Fig. 1.18b). The combination of the
two line charges can be shown to produce a constant potential along the given cylinder
of radius a. Potential outside the cylinder may be computed from the original line charge
and its image. (Add g, on axis if cylinder is unchargejd.) If the original line charge is
within a hollow cylinder a, the rule for finding the image is the same, and potential

inside may be computed from the line charges. |
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Fic. 1.18b Image of line charge g, in a parallel conducting cylinder.

Example 1.18d
IMAGE OF A POINT CHARGE IN A SPHERE

For a point charge g placed distance r from the center of a conducting sphere of radius
a, the image is a point charge of value (—qga/ r,) placed at a distance (a*/ 1,) from the
center (Fig. 1.18¢). This combination is found to give zero potential along the spherical
surface of radius a, and may be used to compute potential at any point P outside of
radius a. (Or, if the original charge is inside, the image is outside, and the pair may be
used to compute potential inside.)

Example 1.18e
MULTIPLE IMAGINGS

For a charge in the vicinity of the intersection of two conducting planes, such as g in
the region of AOB of Fig. 1.184, there might be a temptation to use only one image in
each plane, as 1 and 2 of Fig. 1.184. Although +¢g at Q and —g¢ at 1 alone would give
constant potential as required along OA, and +¢q at Q and —g¢ at 2 alone would give
constant potential along OB, the three charges together would give constant potential

Q

[N

Fic. 1.18¢c Image of a point charge in a sphere.
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Fic. 1.18d Multiple images of a point or line charge‘between intersecting planes.
along neither OA nor OB. It is necessary to image these images in turn, repeating until
further images coincide or until all further images are too far distant from the region to
influence the potential. It is possible to satisfy exactly:the required conditions with a

finite number of images only if the angle AOB is an exact submultiple of 180 degrees,
as in the 45-degree case illustrated by Fig. 1.18d.

1.19  PROPERTIES OF TWO-DIMENSIONAL FIELDS: GRAPHICAL FIELD MAPPING

Many important electrostatic problems may be considered as two-dimensional, as in
the pair of parallel wires of Fig. 1.8b or the coaxial system of Fig. 1.15. In these the
field distribution is the same in all cross-sectional planes, and although real systems are
never infinitely long, the idealization is often a useful one. In the examples cited above,
the field distributions could be found analytically, but for cylindrical systems with more
complicated boundaries, numerical techniques may be called for and will be introduced
in the next section. We wish to give first some properties of two-dimensional fields that
can be used to judge the correctness of field maps and can even be used to make useful
pictures of the fields and to obtain approximate values of such things as capacitance,
conductance, and breakdown voltage. Perhaps the greatest value in making a few such
maps is the feel they give for field behavior.

It has already been established that equipotentials and electric field lines intersect at
right angles, as in the coaxial system of Fig. 1.19a, where field lines are radial and
equipotentials are circles in any given cross-sectional plane. It has also been shown that
the region between two field lines may be considered a flux tube, and if the amount of
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An
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(a) (b)

Fie. 1.19 (a) Map of field between coaxial conducting cylinders. (b) Curvilinear rectangle for
graphical field mapping.

flux is properly chosen, the map is made up of small curvilinear figures with equal side
ratios, that is, ‘‘curvilinear squares.’” This also is illustrated in Fig. 1.194a. To show this
more generally, consider one of the curvilinear rectangles from a general plot, as in
Fig. 1.19b. If An is the distance between two adjacent equipotentials, and As the distance
between two adjacent field lines, the magnitude of electric field, assuming a small
square, is approximately A®/An. The electric flux flowing along a flux tube bounded
by the two adjacent field lines for a unit length perpendicular to the page is then

Al//=DAs=sEAs=M
An
or
As  Ay¢
An & AD M

So, if the flux per tube Ay, the potential difference per division A®, and the permittivity
& are constant throughout the plot, the side ratio As/An must also be constant, as stated
above.

We saw in Sec. 1.14 that conducting surfaces are equipotentials in an electrostatic
field. Thus, the electric field lines meet the electrodes at right angles.

In applying the principles to the sketching of fields, some schedule such as the
following will be helpful.

1. Plan on making a number of rough sketches, taking only a minute or so apiece,
before starting any plot to be made with care. The use of transparent paper over
the basic boundary will speed up this preliminary sketching.

2. Divide the known potential difference between electrodes into an equal number
of divisions, say four or eight to begin with.

3. Begin the sketch of equipotentials in the region where the field is known best, as
for example in some region where it approaches a uniform field. Extend the equi-
potentials according to your best guess throughout the plot. Note that they should
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Fic. 1.19¢ Map of fields between a plane and stepped conductor.

tend to hug acute angles of the conducting boundaIy, and be spread out in the
vicinity of obtuse angles of the boundary.

. Draw in the orthogonal set of field lines. As these are started, they should form

curvilinear squares, but as they are extended, the condition of orthogonality should
be kept paramount, even though this will result i m some rectangles with ratios
other than unity.

. Look at the regions with poor side ratios and try to see what was wrong with the

first guess of equipotentials. Correct them and repeat the procedure until reason-
able curvilinear squares exist throughout the plot.

. In regions of low field intensity, there will be large figures, often of five or six

sides. To judge the correctness of the plot in this region, these large units should
be subdivided. The subdivisions should be started back away from the region
needing subdivision, and each time a flux tube 1s divided in half, the potential
divisions in this region must be divided by the same factor. As an example, Fig.
1.19c shows a map made to describe the field between a plane conductor at
potential zero and a stepped plane at potential V,, with a step ratio of 3.

\

1.20 NUMERICAL SOLUTION OF THE LAPLACE AND POISSON EQUATIONS

Numerical methods are becoming increasingly attractive as digital computer speed and

memory capacity continue to increase. Among the powerful methods are those using
finite differences,® finite elements,? Fourier transforma{ions,9 or method of moments
(Sec. 7.3). Still others will undoubtedly be developed as computing capabilities continue
to increase. Here we illustrate the idea through the elemental difference equation ap-
proach and some of its extensions.

8 L. Collatz, The Numerical Treatment of Differential Equoflons, Springer-Verlag, New York,

1966. D. Potter, Computational Physics, Wiley, New York, 1973. L. J. Segerlind, Applied

Finite Element Analysis, 2nd ed.. Wiley, New York, 1984. R. Sorrentino (Ed.), Numerical
Methods for Passive Microwave and Milimeter Wave S’rrucTures, IEEE Press, New York,

1989.

9 R.W. Hockney and J. W. Eastwood, CompuferSImulc’ﬂon Using Particles, Am. Inst. Physics,
New York, 1988.
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‘We consider first the Poisson equation with potential specified on the boundary. For
simplicity we take a two-dimensional problem (no variations in z). The internal region
is divided by a grid of mutually orthogonal lines with potential eventually to be deter-
mined at each of the grid points. Rectangular coordinates are used and potential at a
point (x, y) is expanded in a Taylor series:

0Pk, y) n #®(x, y)

D + h,y) =D, y) + / 1
o+ hy) G y) + h— a2 M

ad(x, 2 3*P(x,
O — hyy) ~ B, y) — h LD LT @

ax 2 ox

By adding (1) and (2) and rearranging, we have the approximation
*P(x, y) @@+ hy) — 20, y) + P — h,y) 3)

axr K

The second partial derivative with respect to y can be obtained in the same way. Then
Poisson’s equation in two dimensions

PP P p
2 + ;2 = =
ox< dy £

can be expressed in the approximate form

Dx + hy) + Ox — hy) + P,y + k)

2
+ O,y = h) — 4D, y) = el ©)
where the distance increment % is taken, for simplicity, to be equal in the two directions.
It is of interest to note that, if space charge is zero, the potential at a given point is the
average of the potentials at the surrounding points.

Note that potential is known on boundary points so that a straightforward approach
is to solve a set of equations such as (4) for the unknown potentials at the grid points
in terms of the known values on boundary points. This is sometimes done by a matrix
inversion technique, but if memory capacity is a problem, it may be better to use a
method for direct iterative adjustment of grid potentials. This starts from an initial guess
and corrects by bringing in the given values on the boundary through successive passes
through the grid. We illustrate this first by a simple averaging technique.

Exampie 1.20
NUMERICAL SOLUTION OF LAPLACE EQUATION BY SIMPLE AVERAGING

As an illustration of iteration with simple averaging, let us find the potentials for the
grid of points in the structure in Fig. 1.20a. This is an infinite cylinder of square cross
section with the potentials specified on the entire boundary. The space charge will be
assumed to be zero so we will be solving Laplace’s equation. The broken lines represent
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FiG. 1.20@ Cylinder of square cross section and grid for difference equation solution.

the grid to be used to approximate the region for the finite-difference solution. The
coarse grid was chosen to simplify the example; a finer grid would be used in most
practical problems. The four unknown potentials designated ®; to @, are assumed
initially to be the average of the boundary potentials, 65 V. The first calculation is to
find @, as the average of the four surrounding potentials (80, 100, ®, = 65, ®; =
65). Therefore, in the column labeled Step 1 in Table 1.20, ®, is given the value 77.50.
Then ®, is found as the average of 100, 20, 77.50, and 65, and this value is put in the
table in Step 1. The procedure is repeated for ®; and ®@,. The Step 2 proceeds in the
same way. It is seen that after several steps the potentials converge to definite values.
Since (4) is approximate, the potentials have converged to approximate answers. They
would differ less from the correct solution if the grid were made finer. The correct
potentials for the four points are also listed in the table.

Mesh Relaxation The above method, in which succéssive averaging of the poten-
tials leads to a final result not far from the correct potentials, is convenient for small
problems and, in many cases, has a satisfactory rate of convergence. A more generally
useful method of calculation is based on a defined residual for each grid point that
measures the amount by which the potential there differs from the value dictated by

Table 1.20
Iterative Calculation for Example 1.20
Step Correct
1 2 3 4 5 Potentials
D, 71.50 79.07 77.89 77.60 77.51 75.2
P, 65.63 63.28 62.70 62.55 62.51 60.5
D, 70.63 68.28 67.70 67.52 | 67.52 65.4

D, 54.06 52.89 52.60 52.51 52.51 50.7
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the potentials on the neighboring grid points. The residual for the kth pass through the
grid is defined by

R® = @O,y + h) + &,y — h) + ©x + h, y)

. 2p (5)
+ OO — h,y) — 40¢ " D(x, y) +
&

where i = kor k — 1 since, at any grid point, the potentials at some of the neighboring
points will generally have already been adjusted on that pass through the grid, as was
seen in the above illustration. On each pass (corresponding to Steps 15 in Table 1.20)
and at each grid intersection, one calculates the residual R*) and then the new potential
according to

R®
O® = pk-b 4 QT 6)
where () is called the relaxation factor because it determines the rate at which the
potentials relax toward the correct solution. It is taken in the range 1 = () < 2. Selection
of ) = 1, called simple relaxation, corresponds to the method of averaging illustrated
above. When () > 1, the procedure is called the method of successive overrelaxation
(SOR). If ) is fixed, it is usually taken near 2 for problems with many mesh points,
but this can cause an initial increase in error, so it is often better to start with {} = 1
and increase it gradually with each iteration step. One procedure that is found useful
for large grids is the cyclic Chebyshev method in which the following program of
varying () is used:

Qv =1 @)
am - 1 ®
1 — g,
where
)

N = ?}(cosg + cos%) ©)

for a grid with » mesh points in one direction and m points in the other.
e o Lo a0
Q= = Q,, = 2 (11)

1+ V1 —n

When this method is used, the mesh is swept like a checkerboard, with all the red
squares being treated on the first pass with Q(1, all the black squares being treated on
the second pass using (1, the reds on the third with 0, and so on. This method
requires an additional memory cell in the computer for each mesh point but the speeded
convergence usually makes it worthwhile. The convergence can be improved appreci-
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ably by having a good initial guess for the potentials, say by using results from a similar
problem.

Boundary Conditions In setting up the boundary conditions on a grid, the easiest
situation occurs when potentials are specified on grid points. A more difficult problem
is where the normal derivatives are specified. The derivatives are usually zero, as would
be the case at an insulating surface in a conduction problem (Ex. 1.14) or along a line
of symmetry used as an artificial boundary to reduce the required grid size. Examples
of such boundaries are shown in Figs. 1.20b and 1.20c. In one case the structure has
obvious symmetry in the x—y plane so that a solution need be found for only one-fourth
of the structure. In the other example, the boundary may be taken along the axis of a
cylindrically symmetric system. In the latter case, the difference equations can include
the symmetry (Prob. 1.20e). In the former case, to make the normal derivative of po-
tential zero at a boundary, an imaginary grid point is set up outside the boundary and
its potential is kept the same as at the point symmetrically located just inside the bound-
ary. Sometimes the boundary points do not lie on mesh points; in such cases, linear
interpolation is used to set the potentials at mesh points' nearest to the boundary.
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Fie. 1.20b,c Examples in rectangular and cylindrical coordinates where symmetry reduces the
required size of the grid for finite-difference solutions.

|
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1.21 EXAMPLES OF INFORMATION OBTAINED FROM FIELD MAPS

Field maps of the two-dimensional regions, made by either numerical or graphical
techniques, may be used to find field strength within the dielectric region or integral
properties of the systems, such as capacitance per unit length and conductance per unit
length. Field strengths are simply A®/An in the notation of Sec. 1.19, provided the
divisions are fine enough. Danger of breakdown is obviously greatest near acute angles
where spacing of equipotentials is smallest, as in the right-angle corner of Fig. 1.19c.

For capacitance, we need to know electric flux density at the conductors, which
corresponds to surface charge density. Values of potential, and not field, are typically
obtained from numerical solutions, but the approximation to a normal derivative at the
boundary is readily calculated. Equipotentials and field lines may be drawn in and then
calculation of capacitance becomes particularly simple. By Gauss’s law, the charge
induced on a conductor is equal to the flux ending there. This is the number of flux
tubes N; multiplied by the flux per tube. The potential difference between conductors
is the number of potential divisions N, multiplied by the potential difference per
division. So, for a two-conductor system, the capacitance per unit length is

0 _ NAy
®, - ®, NAD

The ratio Ay/A® can be obtained from Eq. 1.19(1):
Nf SAS
c == 1
Np< An) )

And, for a small-square plot with As/An equal to unity,

C:

Nf
= o f 2
C=c¢ N, F/m 2

For example, in the coaxial line plot of Fig. 1.19a, there are 4 potential divisions and
16 flux tubes, so the capacitance, assuming air dielectric, is

107° 16 o
36 X i 353 X 107" F/m 3)
Calculation from Eq. 1.9(4), with b/a = 5.2, gives 33.6 X 10~ '? F/m, indicating that
the map is not perfect.

This same technique can be used to find the conductance between two electrodes
placed in a homogeneous, isotropic, conductive material. The conductivity of the elec-
trode materials must be much greater than that of the surrounding region to ensure that,
when current flows, there is negligible voltage drop in the electrodes and they can be
considered to be equipotential regions. The potential and electric field are related in the
same way as for the case in which there is no conductivity (Sec. 1.13). There is a current
density J = o E, where o is conductivity, and current tubes replace the flux tubes of
the dielectric problem. The current in a tube is

C =
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AD A
Al = JAs = o As = =——= @
lAn
The conductance per unit length between two electrodcias is defined as
I N; Al
G = =1 S/m Q)

®, - @ NAD |

Using (4) and taking As/An = 1, ;
N,

G=o0c-2 S/m 6)

N,

From (2) and (6) we see the useful conclusion that the conductance per unit length of
electrodes is related to the capacitance per unit length between the same electrodes by
the ratio o /e. This can be of use, for example, in transmission-line problems in giving
the conductance per unit length between conductors when the capacitance is known.

Before digital computer methods for solving field problems became so readily avail-
able, the analogy seen above between the field distributions in conducting and dielectric
media formed the basis for an important means of determining fields in dielectric sys-
tems. Electrodes corresponding to those of the dielectric problem are set up in an
electrolytic tank or on conduction paper and equipotentials measured in the conducting
system (see Prob. 1.21c). |

Conducting ]
region ] |

Dielectric g

FiG. 1.21 Field map for a conductive medium partially filling the space between two highly
conductive electrodes. |
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If a part of the boundary of the conducting region is a nonconducting dielectric, as
in Fig. 1.21, current does not flow in the nonconductive region. As pointed out in
Sec. 1.14, the normal component of E inside the conductive region must then vanish
at the boundary with the dielectric region. By use of this condition and the fact that E
is perpendicular to the equipotential electrode surfaces, the field in the conductor can
be mapped. Suppose, for example, the conductive material between the electrodes in
Fig. 1.21 is silicon with the common value of conductivity ¢ = 100 S/m. Then
G = 100 X (8/23) = 35S/m.

Energy in Fields

1.22 ENERGY OF AN ELECTROSTATIC SYSTEM

The aim of this section is to derive an expression for electrostatic energy in terms of
field quantities. The result we will obtain can be shown to be true in general; for
simplicity, however, it is shown here for charges in an unbounded region.

The work required to move a charge in the vicinity of a system of charges was
discussed in Sec. 1.7. The work done must appear as energy stored in the system, and
consequently the potential energy of a system of charges may be computed from the
magnitudes and positions of the charges. To do this, let us consider bringing the charges
from infinity to their positions in space. No force is required to bring the first charge
in since no electric field acts on the charge. When the second charge g, is brought to
a position separated from the location of g, by a distance R,,, an energy

9192
Uy, =—— 1
12 47eR )

is expended, as was shown in Sec. 1.7. When the third charge is brought from infinity,
it experiences the fields of ¢; and g, and an energy of

9193 + 9243

Uiy + U = 4meR3  4TER,3

@
is expended. The total energy expended to assemble these three charges is the sum of
(1) and (2).

In summing over the three charges, we may write

3 3
4q;

i I1#j
j=1 47T€R,-j J
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With the factor 3, this yields the sum of (1) and (2), since by convention i and j are
summed over all the particles, and each contribution to energy enters twice. In physical
terms, the factor of 2 would result from assuming all other charges in position when
finding the energy of the ith charge. The term i = j has been excluded since the self-
energy of the point charge (i.e., the electron, ion, etc.) does not affect the energy of the
field. Its contribution to the total system energy does not depend upon the relative
positions of the charges. For 7 charges, the direct extension gives
|

1 n n qj i
Uz =~ f i#j 3)
E ;Zl 1 121 4778R,-j I

where the subscript E indicates energy stored in electric charges and fields. By use of
Eq. 1.8(3) for potential, this becomes

Ug = 2} 7, @

SRR

Extending (4) to a system with continuously varying chirge density p per unit volume,
we have

1
1 |
Up =3 fv pdav )

The charge density p may be replaced by the divergencel of D by Eq. 1.11(2):
\
1 .
Ug =—J- (V- D)Y®dV |
2 Jy -
Using the vector equivalence of Prob. 1.11a,
1 1 ﬁ
Ug =-j V-(CDD)dV——f DI (V®) av
2Jy 2y
The first volume integral may be replaced by the surface jntegral of ®D over the closed
surface surrounding the region, by the divergence theorem [Eq. 1.11(7)]. But, if the
region is to contain all fields, the surface should be taken at infinity. Since ® dies off

at least as fast as 1/r at infinity, D dies off at least as fast as 1/r?, and area only
increases as 12, this surface integral approaches zero as tlvlle surface approaches infinity.

fV-(CI)D)dV=§ ®D-dS| =0
v Seo
Then there remains
1 1
UE=——fD~(V¢>)dV=—fD-EdV 6)
2 Jy 2Jy

This result seems to say that the energy is actually in the lelectric field, each element of
volume dV appearing to contain the amount of energy
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dUy = 3D - E dV @

The right answer is obtained if this energy density picture is used. Actually, we know
only that the total energy stored in the system will be correctly computed by the total
integral in (6).

The derivation of (6) was based on a system of charges in an unbounded, linear,
homogeneous region. The same result can be shown if there are surface charges on
conductors in the region. With both volume and surface charges present, (5) becomes

1 1
Uy = EL p® dv + EL p.® dS ®)

The proof that this leads to (6) is left to Prob. 1.22e. Note that in this equation, and the
special case of (5), ® is defined with its reference at infinity, since the last term of
(3) is identified as ®. The advantage of (6) is that it is independent of the reference for
potential.

For a nonlinear medium, the incremental energy when fields are changed (Prob.
1.22f) is

dUE=fE-dDa'V ©)

Example 1.22
ENERGY STORED IN A CAPACITOR

It is interesting to check these results against a familiar case. Consider a parallel-plate
capacitor of capacitance C and a voltage V between the plates. The energy is known
from circuit theory to be 3CV?, which is commonly obtained by integrating the product
of instantaneous current and instantaneous voltage over the time of charging. The result
may also be obtained by integrating the energy distribution in the field throughout the
volume between plates according to (6). For plates of area A closely spaced so that the
end effects may be neglected, the magnitude of field at every point in the dielectric is
E = V/d (d = distance between plates) and D = &V/d. Stored energy Uy given by
(6) becomes simply

1 1 eV\(V
Ug = E(volume)(DE) =3 (Ad) 7\
This can be put in terms of capacitance using Eq. 1.9(3):
1

eA 1
=—{—=|vV? ==CV? 10
Ug 2<d) 2C (10)
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PROBLEMS
|
1.2a (i) Compute the force between two charges of 1 C each, placed 1 m apart in vacuum.
(i) The esu unit of charge (statcoulomb) is defined as one that gives a force of 1 dyne
when placed 1 cm from a like charge in vacuum. Use this fact to check the conversion
between statcoulombs and coulombs given in Appendix 1.

1.2b Calculate the ratio of the electrostatic force of repulsidn between two electrons to the
gravitational force of attraction, assuming that Newton’s law of gravitation holds. The
electron’s charge is 1.602 X 107! C, its mass is 9.11 X 1073! kg, and the
gravitational constant X is 6.67 X 107!! N-m?/kg? '

1.2c¢ In his experiment performed in 1785, Coulomb suspended a horizontal rod from its
center by a filament with which he could apply a torque to the rod. On one end of the
rod was a charged pith ball. In the plane in which the rod could rotate was placed
another, similarly charged, pith ball at the same radius; By turning the top of the fila-
ment he applied successively larger torques to the rod with the amount of torque pro-
portional to the angle turned at the top. With the angle at the top set to 36 degrees, the
angle between the two pith balls was also 36 degrees. Raising the angle at the top to
144 degrees decreased the angular separation of the pith balls to 18 degrees. A further
increase of the angle at the top to 575.5 degrees decreased the angular separation of
the balls to 8.5 degrees. Determine the maximum difference between his measure-
ments and the inverse-square law. (For more details, see R. S. Elliott.!)

1.2d Construct the electric field vector for several points in the x—y plane for like charges g
at (d/2, 0, 0) and (—d/2, 0, 0), and draw in roughly a ffew electric field lines.

1.2e* Repeat Prob. 1.2d for charges of 2¢ and —q at (d/2, 0, 0) and (—d/2, 0, 0), respec-
tively. Find a point where the field is zero.

1.2f Calculate the electric field at points along the axis perpendlcular to the center of a disk
of charge of radius a located in free space. The charge on the disk is a surface charge
ps C/m? uniform over the disk.

1.3a Show by symmetry arguments and the results of Sec. 1.3 that there is no electric field
at any point inside a spherical shell of uniform surface charge.

1.3b Show that the integral of normal flux density over a general closed surface as in
Fig. 1.3a with charge ¢ inside gives g. Hint: Relate surface element to element of
solid angle.

1.3c Calculate that electric flux emanating from a point charge g and passing through a
mathematical plane disk of radius a located a distance d from the charge. The charge
lies on the axis of the disk. Show that in the limit wher'e a/d — o, the flux through
the disk becomes g/2. .

1.d4a A coaxial transmission line has an inner conducting cylinder of radius a and an outer
conducting cylinder of radius c. Charge g, per unit length is uniformly distributed over
the inner conductor and — g, over the outer. If dielectric g, extends fromr = ator =
b and dielectric &, from r = b to r = ¢, find the electric field for r < g, fora <r <
b, for b < r < c, and for r > c. Take the conducting cylinders as infinitesimally thin.
Sketch the variation of D and E with radius.

1.4b A long cylindrical beam of electrons of radius 2 moving with velocity v, =
Vo[l + 8,(r/a)*] has a charge-density radial variation p = py[1 — 8,(r, /a)z] Find the
radial electric field in terms of the axial velocity v, and the total beam current /;, and
sketch its variation with radius.
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1.4d*

1.4e*

1.5a

1.5b

1.5¢

1.5d

1.6a

1.6b

1.6c

1.7a

1.7b

1.8a

1.8b*

Problems 63

Derive the expression for the field about a line charge, Eq. 1.4(3), from the field of a
point charge.

A sphere of charge of radius @ has uniform density p, except for a spherical cavity
of zero charge with radius b, centered at x = d,y = 0,z = 0, where d < g and

b < a — d. Find electric field along the x axis from — o < x < oo, Hint: Use super-
position.

As in Prob. 1.4d, but now find an expression for electric field for a general point
inside the cavity, showing that the field in the cavity is constant.

A point charge ¢ is located at the origin of coordinates. Express the electric field vec-
tor in its rectangular coordinate components, and evaluate the surface integral for §
chosen as the face perpendicular to the x axis of a cube of side lengths 2a centered on
the charge. Use symmetry to show that Gauss’s law is satisfied.

Perform the integrations in Eq. 1.5(3) for an infinitely long circular cylindrical ion
beam with p = py[1 + (r-/a)?] using the square prism shown in Fig. 1.5 and plane
ends at z = 0 and / orthogonal to the axis.

If A, B, and C are vectors, show that
B-A=A"-B
A+B)+C=A+ @B+ C
A-B+C=A-B+A-C

Vector A makes angles a,, B, ¥, with the x, y, and z axes respectively, and B makes
angles a,, 3,, ¥, with the axes. If 8 is the angle between the vectors, make use of the
scalar product A - B to show that

cos 6 = cos @, cos a, + cos B cos B, + COS y; COS Y,

Show how the flux function may be used to plot the field from point charges g and
— g distance d apart. Hint: Make use of solid angles and relate these to angle 6 from
the axis joining charges.

Plot the field from like charges ¢ distance d apart (Prob. 1.2d) by making use of the
flux function.

Plot the field of charges 2¢ and — ¢ distance d apart (Prob. 1.2e) by use of flux. Note
that not all flux lines terminate at both ends on charges.

Evaluate § F - dl for vectors F = % zxy + §x*and F = 2 y — § x about a rectangu-
lar path from (0, 1) io (1, 1) to (1, 2) to (0, 2) and back to (0, 1). Repeat for a triangu-
lar path from (0, 0) to (0, 1) to (1, 1) back to (0, 0). Are either or both nonconser-
vative?

A point charge ¢ is located at the origin of a system of rectangular coordinates. Evalu-
ate [ E - dl in the x—y plane first along the x axis fromx = 1 tox = 2, and next
along a rectangular path as follows: along a straight line from the point (1, 0) on the x
axis to the point (1, 3); along a straight line from (1, 3) to (2, 3); along a straight line
from (2, 3) to (2, 0).

A circular insulating disk of radius a is charged with a uniform surface density of
charge p, C/m> Find an expression for electrostatic potential ® at a point on the axis
distance z from the disk.

A charge of surface density p, is spread uniformly over a spherical surface of radius a.
Find the potential for r < a and for rr > a by integrating contributions from the differ-
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ential elements of charge. Check the results by making use of Gauss’s law and the
symmetry of the problem.

1.8c Check the result Eq. 1.8(8) for the potential about a line charge by integrating contri-
butions from the differential elements of charge. Note ithat the problem is one of
handling properly the infinite limits. k

1.8d A flat layer of charge of density p, lies perpendicular to the z axis and is infinitely
broad in the x and y directions. Using Gauss’s law and Eq. 1.8(1), find the dependence
of the potential difference across the layer on its thickness d.

1.8e Consider two parallel sheets of charge having equal surface charge densities but with
opposite sign. The sheets are both of infinite transverse dimension and are spaced by a
distance d. Using Gauss’s law and Eq. 1.8(1), find thelelectric fields between and out-
side the sheets and find the dependence of potential difference between the pair of
sheets on the spacing. (This is called a dipole layer.)

1.8f In a system of infinite transverse dimension, a sheet of charge of p, C/m? lies be-
tween, and parallel to, two conducting electrodes at zero potential spaced by distance
d. Find the distribution of electric field and potential b;etween the electrodes for arbi-
trary location of the charge sheet. Sketch the results for the cases where the sheet is
(i) in the center and (ii) at position d/4.

1.8g Show that all the equipotential surfaces for two parallel line charges of opposite sign
are cylinders whose traces in the perpendicular plane are circles as shown in Fig. 1.8c.

1.8h A linear quadrupole is formed by two pairs of equal and opposite charges located
along a line such that +g¢ lies at + 8, —2q at the orig'}n, and +¢ at —é. Find an
approximate expression for the potential at large dlstances from the origin. Plot an
equipotential line.

1.8i

-

Show that the magnitude of the torque on a dipole in an electric field is the product of
the magnitude of the dipole moment and the magmtude of the field component
perpendicular to the dipole. \

1.9 Find the capacitance of the system of two concentric sphencal electrodes containing
two different dielectrics used as Ex. 1.4c. |

|

1.10a Find the gradient of the scalar function M = e** cos By cosh az.

1.10b For two point charges g and —g¢ at (d/2, 0, 0) and (— d/2 0, 0), respectively, find the
potential for any point (¥, y, z) and from this derive the electric field. Check the result
by adding vectorially the electric field from the individual charges.

1.10c Three positive charges of equal magnitude g are located at the corners of an equilateral
triangle. Find the potential at the center of the tnangle and the force on one of the
charges.

1.10d For two line charges g, and — g, at (d/2, 0) and (—d/2,0), respectively, find the po-
tential for any point (x, y) and from this derive the electric field.

1.10e* Find the expression for potential outside the large sphere of Prob. 1.4d. Also find the
electric field for that region as well as for the region outside the small sphere but
inside the large sphere.

1.10f Find E, and E, in the void in the sphere of charge in Prob. 1.4d by first finding the
potential. The zeros for the potentials of both large and small spheres should be at
infinity. |
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1.11b

1.11c
1.11d

1.11e

Problems é5

Utilize the rectangular coordinate form to prove the vector equivalences
Vy®) = yVd + dVy
V-(A) = yV-A + A-Vy
where ¢ and @ are any scalar functions and A is any vector function of space.

Show that the vector identity V - yA = A - Vi + ¢V -:A (inside back cover) is
satisfied for ¢y = xyzand F = &x* + jayz + Zyz>

Derive the expression for divergence in the circular cylindrical coordinate system.

Evaluate the divergence of D in Exs. 1.4a, 1.4b, and 1.4c and compare with the known
charge densities. Evaluate V - D for Ex.1.11 using rectangular coordinates.

Given a vector F = %12, evaluate §, F - dS for S taken as the surface of a cube of
sides 2a centered about the origin. Then evaluate the volume integral of V - F for this
cube and show that the two results are equivalent, as they should be by the divergence
theorem.

1.11f The width of the depletion region at a metal-semiconductor contact (Ex. 1.42) can be

1.12a

1.12b

1.12¢

1.12d

1.12e

1.13a

1.13b

calculated using the relation d* = (2e®g/eN), where Py is the barrier potential, ¢ is
electron charge, and N is the density of dopant ions. Calculate d for ion densities of
10'6, 108, and 10?° cm ~3 assuming a barrier potential of 0.6 V. Comment on the ap-
plicability in this calculation of the concept of smoothed-out charge as assumed in
using Poisson’s equation.Take e, = 11.7.

Find the gradient and Laplacian of a scalar field varying as 1/r in two dimensions and
in three dimensions. Use the operators in rectangular form and also in a more
appropriate coordinate system in each case.

Find the electric field and charge density as functions of x, y, and z if potential is
expressed as

® = Csin axsin By e’ where y = Vo? + g2

Find the electric field and charge density as functions of x for a space-charge-limited,
parallel-plane diode with potential variation given by ® = V,(x/d)*. Find the
convection current density J = pv and note that it is independent of x.

Argue from Laplace’s equation that relative extrema of the electrostatic potential can-
not exist and hence that a charge placed in an electrostatic field cannot be in stable
equilibrium (Earnshaw’s theorem).

The potential around a perpendicular intersection of the straight edges of two large
perfectly conducting planes, where the line of intersection is taken to be the axis of a
cylindrical coordinate system, can be shown to be expressible as

& =Ar??sin 29
Show that this function satisfies Laplace’s equation in cylindrical coordinates and sat-

isfies a zero-potential boundary condition on the planes. Find a generalization to an
arbitrary angle « between planes and verify that it satisfies Laplace’s equation.

Which of the following may represent steady currents: J = %x + yyor J =
(k¢ + $y)@? + y?)~1? Sketch the form of the two vector fields.

Conducting coaxial cylinders of radii @ and b have a conducting dielectric with permi-
tivity &, and conductivity o, for the sector 0 < ¢ < «, and loss-free dielectric €, for
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Fic. P1.13b |

the remainder of the dielectric regions (Fig. P1.135). Find capacitance and conduct-
ance per unit length.

1.14a Sketch the field and current lines for a structure of thé form in Fig. 1.14c¢ but with the
dielectric and perfect conductor regions exchanged and a potential difference applied
between the two perfect conductors. Check all continuity conditions at boundaries.

1.14b A solution to the problem of Fig. 1.14c can be shownj‘ to be

2\ (x—a/2) oy ¥+ - a2
+<1 a)m < y ]>+am[y2+<x+a/2>2]}

where a is the length of the conductive region. Show Ethat this satisfies the boundary
conditions on the surface y = 0 and find induced surface charge density along this
boundary.

1.15a Obtain by means of Laplace’s equation the potential d;istribution between two concen-
tric spherical conductors separated by a single dielectric. The inner conductor of radius

a is at potential V;, and the outer conductor of radius b is at potential zero.

1.15b Obtain by means of Laplace’s equation the potential distribution between two concen-
tric spherical conductors with two dielectrics as in Ex! 1.4c.

1.15¢ Two coaxial cylindrical conductors of radii  and b are at potentials zero and V,, re-
spectively. There are two dielectrics between the conductors, with the plane through
the axis being the dividing surface. That is, dielectric &, extends from ¢ = Oto ¢ =
, and ¢, extends from ¢ = 710 ¢ = 2. Obtain the potential distribution from
Laplace’s equation. [

1.15d Obtain the electrostatic capacitances for the two conductor systems described in Sec.
1.15 and in Probs. 1.15a, b, and c.

1.16a Assume the charge-density profile shown in Fig. 1. 16b with N, = 10*cm ™3 and
= 10" cm~3, T = 300 K, and & = 12. Find the Ihelght of the potential barrier
and the width of the space-charge region d, + d,. Determine maximum value
of electric field. '

1.16b Calculate ®(x) for the metal-semiconductor junction ih Ex. 1.4a by integrating Pois-
son’s equatlon Call total barrier height @; in this case. Find the width of the space-
charge region d, assuming N, constant. i

1.16¢* To illustrate the effect of a continuous charge profile u‘x the pn junction example of
Sec. 1.16, consider a charge density in the depletion rqgion of the form p =
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1.17b

1.18a

1.18b

1.18c

1.18d*

1.18e
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(eN.x/a)exp[ —|x/al]. Find the electric field and potential as a function of x, and
sketch p, E, and ® versus x. Find the potential difference between x = —o and
x = o and compare with Eq. 1.16(10), taking Ny = Np.

Prove that, if charge density p is given throughout a volume, any solution of Poisson’s
equation 1.12(3) must be the only possible solution provided potential is specified on a
surface surrounding the region.

Show that the potential in a charge-free region is uniquely determined, except for an
arbitrary additive constant, by specification of the normal derivatives of potential on
the bounding surfaces.

Prove that the line charge and its image as described for a conducting cylinder in Ex.
1.18c will give constant potential along a cylindrical surface at radius a in the absence
of the conducting cylinder.

Prove that the point charge and its image as described for the spherical conductor in
Ex. 1.18d gives zero potential along a spherical surface at radius a in the absence of
the conducting sphere.

A circularly cylindrical electron beam of radius a and uniform charge density p passes
near a conducting plane that is parallel to the axis of the beam and distance s from the
axis. Find the electric field acting to disperse the beam for the edge near the plane and
for the edge farthest from the plane.

For a point charge ¢ lying in a dielectric &, distance x = d from the plane boundary
between &, and a second dielectric &,, the given charge plus an image charge

q(e, — &,)/(g, + &,) placed at x = —d with all space filled by a dielectric &, may
be used to compute the potential for any point x > 0. To find the potential for a point
x < 0, a single charge of value 2ge,/(g, + &,) is placed at the position of ¢ with all
space filled by dielectric &,. Show that these images satisfy the required continuity re-
lations at a dielectric boundary.

Find and plot the surface charge density induced on the conducting plane as a function
of y, when a line charge ¢, lying parallel to the z axis is at x = d above the plane.

1.18f Discuss the applicability of the image concept for the case of a line charge paralle] to

1.18g

1.19a

1.19b

1.19¢

1.19d

and in the vicinity of the intersection of two conducting planes with an angle
AOB = 270 degrees. (See Fig. 1.18d.)

Find the potential at all points outside a conducting sphere of radius a held at potential
@, when a point charge g is located a distance 4 from the center of the sphere
(a<d).

Map fields between an infinite plane conductor at potential zero and a second conduc-
tor at potential Vj, as in Fig. 1.19¢, but for step ratios a/b of  and 4.

Map fields between an infinite flat plane and a cylindrical conductor parallel to the
plane. The conductor has diameter d, and its axis is at height  above the plane. Take
d/h =1,%

The outer conductor of a two-conductor transmission line is a rectangular tube of sides
3a and 5a. The inner conductor is a circular cylinder of radius a, with axis coincident
with the central axis of the rectangular cylinder. Sketch equipotentials and field lines
for the region between conductors, assuming a potential difference V,, between
conductors.

Two infinite parallel conducting planes defined by y = a and y = —a are at potential
zero. A semi-infinite conducting plane of negligible thickness at y = 0 and extending
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from x = 0 tox = o is at potential V,. (See Fig. P1.194.) Sketch a graphical field
map for the region between conductors.

In Prob.1.12e take A to be 35 and r to be measured in centimeters and make a plot of
the 100-V equipotential. Construct a graphical field map between the zero and 100-V
equipotentials showing the 25-, 50-, and 75-V equipotentials. Then sketch in the same
equipotentials found from the formula given in Prob. 1.12e to evaluate your field map.
Find the radial distance from the corner where the gradient exceeds the breakdown
field in air, 30 kV/cm. What does this suggest about the shape the corner should have
to avoid breakdown?

Subdivide the region in Fig. 1.19¢ into a mesh of squares of sides a/2. Terminate the
region on the right a distance a from the corner and on the left a distance 3a/2 from
the comner. Take b = 2a and V; = 100 V. Consider the potentials at the left and right
edges of the above-defined grid to be fixed at the values found in linear variation from
top to bottom. Start with all interior grid points at 50 V. Find the potentlals at the
mesh points assuming zero space charge and applymg the simple averaging method.

Repeat Prob. 1.20a using the cyclic Chebyshev method.

Solve for the potentials at the grid points in the problem in Fig. 1.20a by direct inver-
sion of the set of difference equations expressing Laplace’s equation for all grid
points. Compare the results with those in Table 1.20 and discuss differences. Does di-
rect inversion give the exact values of potentials at the grid points? Explain your
answer.

Set up the difference equation for a three-dimensional {potentia] distribution in rectan-
gular coordinates. Consider a cubical box with the following potentials on the various
sides: top, 80 V; right side, 60 V; bottom, 0 V; left side, 100 V; front, 40 V; back, 100
V. Define a grid of the same coarseness as in Fig. 1.20a and assume initial potentials
for all interior grid points to be the average of the boundary potentials. Calculate the
first set of corrected potentials by the three-dimensional equivalent of the simple

scheme used for Table 1.20. |

Derive the difference equation for potential in cylmd.rlcal coordinates with axial
symmetry assumed (6®/d¢ = 0). i
An electron beam accelerated from zero potential passes normally through a pair of
parallel-wire grids. Model the beam as infinitely broad and without transverse varia-
tion. Set up a one-dimensional difference equation for tthe potential between the grids.
Divide the 5-mm space between grids into five segments Take both grid potentials to
be 1000 V and the beam current to be 10* A/m> Assume 1000 V as a first guess for
all difference-equation grid points. Take three steps of 'potential adjustment with space
charge based on the first guess. Recalculate space charge based on the new potentials

and again iterate the potential three times. Repeat recalculations of space charge and
i
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potentials until the latter differ by no more than 3% between recalculations of space
charge. Use the simple iterative form with ) = 1.

Assume that Fig. 1.19¢ is full scale, and that V,, is 1000 V. Find the approximate di-
rection of the minimum and maximum electric fields in the figure. Plot a curve of
electric field magnitude along the bottom plane as a function of distance along this

plane, and a curve showing surface charge density induced on this plane as a function
of distance.

Calculate the capacitance per unit length from your plots for Probs. 1.19b and c.

Describe the simplest way to use resistance paper to determine the capacitance per
wire between a grid of parallel round wires and an electrode lying parallel to the grid.
(See Fig. P1.21c¢.) Assume the grid to be infinitely long and wide. Defend all decisions
made in the design of the analog.

—©O © 0 0 6 0 6 O—

Fie. P1.21¢c

For a given potential difference V,, between conductors of a coaxial capacitor, evaluate
the stored energy in the electrostatic field per unit length. By equating this to 3CV?,
evaluate the capacitance per unit length.

The energy required to increase the separation of a parallel-plate capacitor by a dis-
tance dx is equal to the increase of energy stored. Find the force acting between the
plates per unit cross-sectional area assuming constant charge on the plates.

Discuss in more detail the exclusion of the self-energy term in Eq. 1.22(3), and
explain why the problem disappeared in going to continuous distributions, as in
Eq. 1.22(5).

Show the equality of the energies found using Eqs. 1.22(5) and (6) for a spherical
volume of charge of radius a and charge density p C/m?.

Consider an arbitrarily shaped, charged finite conductor embedded in a homogeneous-
dielectric region of infinite extent that also contains a volume-charge density distribu-
tion. Starting from Eq. 1.22(8) show that (6) results. Make use of the identity in Prob.
1.11a and consider the dielectric to be bounded by the surface of the conductor and
that at infinity.

If an incremental charge distribution is brought into a field, the incremental energy
may be written

SUg = f DSpdV
v

Use this to develop Eq. 1.22(9) for an unbounded region with a medium which may be
nonlinear.



2.1 INTRODUCTION

Magnetic effects have many similarities to electric effects, but there are also important
differences. Magnetic forces were first observed through the attraction of iron to natu-
rally occurring magnetic materials such as lodestone. The compass, apparently devel-
oped in China, was introduced into Europe around A.D. 1190, and had a profound effect
upon navigation thereafter. In 1600 William Gilbert, physician to Queen Elizabeth I,
published an important book, De Magnete, presenting a rational and thorough summary
of the magnetic effects known to that date, with discussions of some of the similarities
to and differences from the electric effects then known. Had discoveries stopped at that
point, we could immediately adapt the development of ithe preceding chapter to mag-
netic fields, the two kinds of magnetic “charges” being called north and south poles.
The important difference is that magnetic charges have so far been found only in pairs,
not isolated, so that we would be concerned with fields from dipoles, as in Ex. 1.8d.
Discoveries did not stop, hov.ever. In 1820, Hans Christian Oersted, during a class
demonstration of an electric ba:iery, observed that the electric current in a wire caused
a nearby compass neeaie to be deflected, thus establishing clearly the first of several
important relationships between electric and magnetic i« ffects. André-Marie Ampére
very quickly extended the experiments and developed  quantitative law for the phe-
nomenon. Others who contributed both to the understanding and to the practical use of
electromagnets within a very short period were Jean-Baptiste Biot, Felix Savart, Joseph
Henry, and Michael Faraday. The force produced by magnetic fields (either from per-
manent magnets or from electromagnets) on electric currents was also clearly estab-
lished through these many experiments. These relationships between electric currents
and magnetic fields will constitute the starting point for our development of magnetic
fields in this chapter. The relationships are somewhat more complicated than those of
the preceding chapter, primarily because both the current that acts as the source of field

70
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and the current element acting as a probe to measure it are vectors whose directions
must be introduced into the laws.

As with electric fields, the distributions studied in this chapter, although called
“static,” are applicable to many time-varying phenomena. These “quasistatic” prob-
lems are among the most important uses of the laws and, in some cases, are valid for
extremely rapid rates of change. Still we must remember that other phenomena enter—
and are likely to be important—when the fields change with time. These are studied in
the following chapter.

Before beginning the detailed development, let us look briefly at a few examples of
important static or quasistatic magnetic field problems. There was the prompt appli-
cation of Oersted’s observation to useful electromagnets. One of Henry’s early magnets
supported more than a ton of iron, with the current driven only by a small battery.
Electromagnets are now routinely used in loading or unloading scrap iron and many
other applications. The development of practical superconductors in the 1960s has made
possible magnets with high fields in large volumes with additional advantages of sta-
bility and light weight. Large currents can be made to flow in the magnet winding since
there is no voltage drop and no heating. The need to refrigerate is compensated suffi-
ciently for a number of special applications. Superconductors are used extensively in
high-energy physics, where the need is for large volumes of strong field. Fusion research
depends on massive superconductive magnets for containment of the ionized gases of
a plasma. Motors and generators for special applications such as ship propulsion are
being made lighter and smaller by using superconductors.!

Moving charges constitute currents and magnetic fields produce forces on them as
they travel through a vacuum or a semiconductor. Thus magnetic field coils are used
for deflection and focusing of beams of electrons in television picture tubes and electron
microscopes. The magnetic deflection of flowing charge carriers in a semiconductor is
known as the Hall effect; it is used for measurement of the semiconductor properties
or, with a known semiconductor, may be used as a probe for measurement of magnetic
field.

Coils are used to provide the inductance needed for high-frequency circuits and the
magnetic fields can be found from the currents as in static calculations when the sizes
involved are small compared with wavelength. (However, current distributions are com-
plicated at high frequencies by distributed capacitance in the windings.) Just as we
noted in Sec. 1.1 for electric fields, the distribution of magnetic field in the cross section
of a transmission line is essentially the same as calculated using static field concepts,
even though the fields can actually be varying at billions of times per second.

! More details on superconductors can be found in Sec. 13.4.
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Static Magnetic Field Laws and Concepts

2.2 CONCEPT OF A MAGNETIC FIELD

|
As with the electrostatic fields of the preceding chapter, we use the measurable quantity,
force, to define a magnetic field. We noted in Sec. 2.1 that magnetic forces may arise
either from permanent magnets or from current flow. Since the approach from currents
is more general—and on the whole more important—we start by consideration of the
force between current elements. Permanent magnets may then be included,-at least
conceptually, by considering the effects of these as arising from atomic currents of the
magnetic materials. ‘

The force arising from the interaction of two current elements depends on the mag-
nitude of the currents, the medium, and the distance between currents analogously to
the force between electric charges. However, current has direction so the force law
between the two currents will be more complicated than that for charges. Consequently,
it is convenient to proceed by first defining the quantity iwe will call the magnetic field
and then, in another section, give the law (Ampere’s) that describes how currents con-
tribute to that magnetic field. A vector field quantity B, usually known as the magnetic
Sflux density, is defined in terms of the force df produced on a small current element of
length dl carrying current /, such that 1

df =IdIBsin6 1)

where 0 is the angle between dl and B. The direction relations of the vectors are so
defined that the vector force df is along a perpendicular|to the plane containing dl and
B, and has the sense determined by the advance of a right-hand screw if dl is rotated
into B through the smaller angle (Fig. 2.2). It is convenient to express this information
more compactly through the use of the vector product. The vector product (also called
cross product) of two vectors (denoted by a cross) isi defined as a vector having a
magnitude equal to the product of the magnitudes of the two vectors and the sine of
the angle between them, a direction perpendicular to |the plane containing the two
vectors, and a sense given by the advance of a right-hand screw if the first is rotated

f

/

Iidl

B

Fi6. 2.2 Right-hand screw rule for force on a current element in a magnetic field.
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into the second through the smaller angle. Relation (1) may then be written
df =7dl X B )

The quantity known as the magnetic field vector or magnetic field intensity is denoted
H and is related to the vector B defined by the force law (2) through a constant of the
medium known as the permeability,

B = uH 3)

Many technologically important materials such as iron and ferrite are nonlinear and/or
anisotropic, in which case wu is not a scalar constant, but to keep this introductory
treatment simple, the medium will first be assumed to be homogeneous, isotropic, and
linear. A somewhat more general form of (3) will be given in Sec. 2.3.

In SI units, force is in newtons (N). Current is in amperes (A), and magnetic flux
density B is in tesla (T), which is a weber per square meter or volt second per square
meter and is 10* times the common cgs unit, gauss. Magnetic field H is in amperes per
meter and u is in henrys (H) per meter. Conversion factors to other cgs units are in
Appendix I. The value of u for free space is

o = 4m X 1077 H/m

2.3  AMPERE'S LAW

Ampere’s law, deduced experimentally from a series of ingenious experiments,? de-
scribes how the magnetic field vector defined in Sec. 2.2 is calculated from a system
of direct currents. Consider an unbounded, homogeneous, isotropic medium with a
small line element of length di’ carrying a current /' located at a point in space defined
by a vector r' from an arbitrary origin as in Fig. 2.3a. The magnitude of the magnetic
field at some other point P in space defined by the vector r from the origin is

I'(r') dl' sin ¢

i) = —— R

where R = |r — r’|, the distance from the current element to the point of observation.
The angle ¢ is that between the direction of the current defined by dl’ and the vector

2 For a description, see J. C. Maxwell, A Treatise on Electriclty and Magnetism, 3rd ed.,
Part IV, Chap. 2, Oxford Univ. Press, Oxford, 1892. The law is now more frequently named
after Biot and Savart, but the assignment remains somewhat arbitrary. Following Oerst-
ed'’s announcement of the effect of currents on permanent magnets in 1820, Ampére
immediately announced similar forces of currents on each other. Biot and Savart pre-
sented the first quantitative statement for the special case of a straight wire; Ampére
later followed with his formulation for more general current paths. The form given here
is a derived form borrowing from all that work. For more of the history see E. T. Whiitaker,
A History of the Theories of the Aether and Electricity, Am. Inst. Physics, New York, 1987,
or P. F, Mottelay, Bibliographical History of Electricity and Magnetism, Ayer Co. Publishers,
Salem, NH, 1975.
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dH® %

|
Fic. 2.3a Coordinates for calculation of magnetic field from current element.

R = r — r’ from the current element to the point ofi observation. The direction of
dH(r) is perpendicular to the plane containing dl and R, and the sense is determined
by the advance of a right-hand screw if dl is rotated through the smaller angle into the
vector R. Thus, with the current direction shown in Fig.:2.3a, dH at P is outward from
the page. We see then that the cross product can be used to write the vector form of
Ampéere’s law: !
I'(e’ydl' X R ‘ 1

4mR> @

dH(r) =

To obtain the total magnetic field of the current elements along a current path, (1) is

integrated over the path i

I'(eydl' X R
R @

It is of interest to examine further the relation between B and H. We see that the
field H is directly related to the currents, without regart{l for the nature of the medium
as long as it fills all space homogeneously. The force on a current element was seen in
Sec. 2.2 to depend upon magnetic flux density. The influence of the medium in relating
B and H comes about in the following way. The electronic orbital and spin motions in
the atoms can be thought of as circulating currents on jwhich a force is exerted by B
and which produce a field M (called magnetization) that adds to H. This is analogous
to the response of a dielectric medium shown in Fig. 1.3c. Then B is related to H as
though there were only free space but with the added ﬁ?:ld of the atomic currents

B = p,H+M) | 3

!
Magnetization M may have a permanent contribution (to be considered in Sec. 2.15),
but here we neglect this and assume the material isotropic so that M is parallel to H.
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We can then write
B = py(l + x)H = pH = puH

where x,, is called the magnetic susceptibility, p is the permeability introduced in Sec.
2.2, and p is the relative permeability. Many materials have nonlinear behavior so x,,
and u are, in general, functions of the field strength. For diamagnetic materials y,, <
0, and for paramagnetic, ferromagnetic, and ferrimagnetic materials y,, > 0. Most
materials commonly considered to be dielectrics or metals have either diamagnetic or
paramagnetic behavior and typically |y,,| < 1075 so we treat them as free space, taking
1 = p,. Ferromagnetic and ferrimagnetic materials usually have y,, and p/u, much
greater than unity and in some cases are anisotropic, that is, dependent upon direction
of the field. All of these aspects are considered in more detail in Chapter 13.

Example 2.3a
FIELD ON AXIs OF CIRCULAR LOOP

As an example of the application of the law, the magnetic field is computed for a point
on the axis of a circular loop of wire carrying dc current I (Fig. 2.3b). The element dl’
has magnitude a d¢' and is always perpendicular to R. Hence the contribution dH from
an element is

la d¢'

dH = ————
H 4a(a® + %)

@)

As one integrates about the loop, the direction of R changes, and so the direction of

FiG. 2.3b Magnetic field from element of a circular current loop (Ex. 2.3a).



76 Chapter 2 Stationary Magnetic Fields

dH changes, generating a conical surface as ¢ goes thrmixgh 27 radians (rad). The radial
components of the various contributions cancel, ancii the axial components add.
Using (4)

a dH
@ + 22

dH, = dH sin 0 =

Integrating in ¢ amounts to multiplying by 27; thus

Ia?

= 2@+ 2 ®
Note that for a point at the center of the loop, z = 0,
I
H| = ©)

z=0

i
{

Examplie 2.3b {

FIELD OF A FINITE STRAIGHT LINE OF CURRENT
Let us find the magnetic field H at a point P a pemendibulm distance r from the center

of a finite length of current 1, as shown in Fig. 2.3c. It is easy to see from the right-
hand rule that there is only an H, component. Its magnitude is given by the integral of

(1) over the length 2a
H, = f" Isin ¢ dz |

4mR>
We can see from Fig. 2.3c that sin ¢ = r/R and R = (% + z2)/2. Thus,
4wl a2+ 2Y2 0 2ar [(r/a)? + 112

which becomes I/27r if |a| — co. This same result is found in Ex. 2.4a by a different
method. "

Fie. 2.3c Calculation of magnetic field of straight section of current (Ex. 2.3b).
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@S

Fie. 2.3d Tightly wound solenoid of n turns per meter and its representation by a current sheet
of nl A/m (Ex. 2.3c).

Example 2.3¢
FIELD IN AN INFINITE SOLENOID

Let us here model the long, tightly wound solenoid shown in Fig. 2.3d by an equivalent
current sheet to facilitate calculation of the magnetic field inside. We assume that though
the wire makes a small helical angle with a cross-sectional plane, we can adequately
model it with a circumferential current. The current flowing around the solenoid per
meter is n/, where n is the number of turns per meter and / is the current in each turn.
Then, in a differential length of the sheet model, there is a current nldz. We will cal-
culate, for simplicity, the field on the axis. But one can show, by means that will come
later (see Ex. 2.4d) that the field for an infinitely long solenoid is uniform throughout
the inside of the solenoid. We can adapt (4) for the present calculation by taking /
in (4) to be nldz. Then the total field on the axis for the infinitely long solenoid is
given by

o= J nla® dz ®
e 2(a® + )

In evaluating the integral in (8), one first takes symmetrical finite limits as in (7) and
then lets the limits go to infinity with the result

H. = nl ©®)

For a solenoid of finite length, it is easy to modify (8) to obtain on-axis fields (Prob.
2.3c) but difficult to perform the integrals for fields not on the axis.

2.4 THE LINE INTEGRAL OF MAGNETIC FIELD

Although Ampére’s law describes how magnetic field may be computed from a given
system of currents, other derived forms of the law may be more easily applied to certain
types of problems. In this and the following sections, some of these forms are presented,
with examples of their application. The sketch of the derivations of these forms, because
they are more complex than for the corresponding electrostatic forms, will be left to
Appendix 3.
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One of the most useful forms of the magnetic field laws derived from Ampére’s law
is that which states that a line integral of static magnetic field taken about any given
closed path must equal the current enclosed by that path. In the vector notation,

ng-dl=LJ-dS=I 1)

Equation (1) is often referred to as Ampére’s circuital law. The sign convention for
current on the right side of (1) is taken so that it is positive if it has the sense of advance
of a right-hand screw rotated in the direction of circulation chosen for the line integra-
tion. This is simply a statement of the well-known right-hand rule relating directions
of current and magnetic field.

Equation (1) is rather analogous to Gauss’s law in electrostatics in the sense that it
is an important general relation and is also useful for problem solving if there is suf-
ficient symmetry in the problem. If the product H - dl lis constant along some path, H
can be found simply by dividing / by the path length.

Example 2.4a
MAGNETIC FIELD ABOUT A LINE|CURRENT

An important example is that of a long, straight, round|conductor carrying current /. If
an integration is made about a circular path of radius r centered on the axis of the wire,
the symmetry reveals that magnetic field is circumferential and does not vary with angle
as one moves about the path. Hence the line integral is just the product of circumference
and the value of H ,. This must equal the current enclosed

ffH-dl =2mH, =1
or
H,=—— A/m @
¢ 2
as was found by a different method in Ex. 2.3b. The sense relations are given in
Fig. 2.4a. ‘

Example 2.4b
MAGNETIC FIELD BETWEEN COAXIAL CYLINDERS

A coaxial line (Fig. 2.4b) carrying current / on the inner conductor and —/ on the outer
(the return current) has the same type of symmetry as the isolated wire, and a circular
path between the two conductors encloses current /, so that the result (1) applies directly
for the region between conductors:
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Fie. 2.4 (a) and (b) Magnetic field about line current and between coaxial cylinders (Exs.
2.4a and b).

I
H,=— a<r<hb 3

T 27

Outside the outer conductor, a circular path encloses both the going and return currents,
or a net current of zero. Hence the magnetic field outside is zero.

Example 2.4¢
MAGNETIC FIELD INSIDE A UNIFORM CURRENT

Let us find the magnetic field inside the round inner conductor in Fig. 2.4b assuming

a uniform distribution of current. We will apply (2) but with I replaced by I(r), the
current enclosed by a circle at radius ». The total current in the wire is /(a) = I and

the current density is I/ 7a®. The current I(r) is
2

) = (’—) I )

a

and using (2),

I(r) Ir
H¢(I‘) - E; - 2ma> )
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Fie. 2.4¢c Section through axis of infinite solenoid for Ex. 2.4d showing contributions to H on
axis from two symmetrically spaced elements.

Example 2.4d
MAGNETIC FIELD OF A SOLENOID

In Ex. 2.3c we showed that the magnetic field H, on the axis of an infinitely long
solenoid of n turns per meter carrying a current / A is 'n[. Now let us use the integral
relation (1) to show that the field outside is zero and that inside is uniformly r/. Figure
2.4c shows the section through the solenoid in a plane containing the axis. Let us
consider the integration paths shown by broken lines to be 1 m long in the z direction
for simplicity of notation. Any radial component of H lproduced by a current element
is canceled by that of a symmetrically located element! This is illustrated in Fig. 2.4c
for the fields H, and H,, from elements a and b located equal distances from the point
P. Thus, H - dl is zero along the sides BD and AE. |

Taking the line integral around path ABDEA and setting it equal to the enclosed
current gives ’

E
fH-d1=n1+J’H-d1\=nl (6)
5 |

since H on the axis is nl. From (6) the integral from D to E is zero. Since the placement
of the outside path DE is arbitrary, external H must be |zero.

The line integral around path ABCFA encloses no current so the integral along the
arbitrarily positioned path CF must be equal in magnitude to, and of opposite sign from,
that along AB. Thus, the internal field is everywhere z-directed and has the value

. =nl i O

|
Note that these symmetry arguments cannot be made for a solenoid of finite length, but
the results given here are reasonably accurate for a splenoid having a length much
greater than its diameter, except near the ends. |
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Fic. 2.5a Loop of wire. Cross-hatching shows surface used for calculation of external
inductance.

2.5 INDUCTANCE FROM FLUX LINKAGES: EXTERNAL INDUCTANCE

The important circuit element which describes the effect of magnetic energy storage
for an electric circuit is the inductor. It is of primary concern for dynamic, that is, time-
varying, problems, but the inductance calculated from static concepts is often useful up
to very high frequencies. This is the quasistatic use discussed in the introduction to this
chapter. In a manner similar to the capacitance definition of Sec. 1.9, inductance can
be defined in terms of flux linkage by

L=1JB'dS ¢))
IJs

where the surface S must be specified. Consider, for example, the loop of wire shown
in Fig. 2.5a. The current / produces magnetic flux in the cross-hatched area S bounded
by the loop. Also, some of the flux produced by the current is inside the wire itself. It
is convenient to separate the inductances related to these two components of flux and
call them, respectively, external inductance and internal inductance. Examples of cal-
culations of external inductance for simple structures are given below and an example
of an internal inductance calculation is presented in Sec. 2.17.

Example 2.5a
EXTERNAL INDUCTANCE OF A PARALLEL-PLANE TRANSMISSION LINE

Here we find the external inductance for a unit length of a parallel-plane structure (Fig.
2.5b) which is wide enough compared with the conductor spacing that the fields between
the conductors are, to a reasonable degree of accuracy, those of infinite parallel planes,
as suggested in Fig. 2.5¢. Note that the flux tubes (bounded by the field lines) spread
out greatly outside the edges of the conductors. Thus, there is a strong reduction of flux
density B and, therefore, also H. The line integral of H around one of the conductors
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Fi6. 2.5b Surface for calculation of external inductance of a parallel-plane transmission line.

has its predominant contribution from the field H, between the conductors,

I=§H'dlEHow|

@

where [ is the total current in one conductor and w is tlfle conductor width. This result
applies to any path in the cross-sectional plane (Fig. 2.5¢) between and parallel to the
conductors, so Hy can be considered approximately unjgfonn.

The external inductance for a unit length is found by applying (1) to the surface

between the conductors which is shown shaded in Fig.
z and H; is nearly constant through the space between
dicular to the shaded surface, (1) becomes

2.5b. Since I is independent of
the conductors and is perpen-

1 1 d
L=“I~Lo<>d=#o- H/m €)]

1 ; w

This relation is based on the neglect of fringing fields
d/w.

and is most accurate for small

Fie. 2.5¢ Cross-section of parallel-plane transmission line of finite width showing general

character of magnetic field lines. |
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Fic. 2.5d Surface for calculation of external inductance of a coaxial transmission line.

Example 2.5b
EXTERNAL INDUCTANCE OF A COAXIAL TRANSMISSION LINE

For a coaxial line as pictured in Fig. 2.5d with axial current / flowing in the inner
conductor and returning in the outer, the magnetic field is circumferential and, for a <
r < b, is (Ex. 2.4b)
I
H, = — 4
¢ 27r @
For a unit length the magnetic flux between radii a and b is, by integration over the
shaded area in Fig. 2.54,

bl ul b
LB-dS—L M<%>d’_§—7—rmz 5)

So, from (1), the inductance per unit length is

b
L="m2 H/m 6)
2T a
For high frequencies, there is not much penetration of fields into conductors as will
be seen in Chapter 3, so this is then the main contribution to inductance. The internal
inductance for low frequencies will be considered in Sec. 2.17.
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Differential Forms for Magnetostatistics
and the Use of Potential

2.6 THE CURL OF A VE'CTOR; FIELD

To write differential equation forms for laws having to do with line integrals, it will be
necessary to make use of the vector operation called curl. This is defined in terms of a
line integral taken around an infinitesimal path, divided by the area enclosed by that
path. It is seen to have some similarities to the operation of divergence of Sec. 1.11,
which was defined as the surface integral taken about an infinitesimal surface divided
by the volume enclosed by that surface. Unlike the divergence, however, the curl op-
eration results in a vector because the orientation of the surface element about which
the integral is taken must be defined. This additional complication seems to be enough
to make curl a more difficult concept for a beginning student. The student should attempt
to obtain as much physical significance as possible from the definitions to be given, but
at the same time should recognize that full appreciation of the operation will come only
with practice in its use.

The curl of a vector field is defined as a vector function whose component at a point
in a particular direction is found by orienting a small area normal to the desired direction
at that point, and finding the limit of the line integral divided by the area:

A . $F-d
8 lim T——
[curl FJ; m RS,

(€]

where i denotes a particular direction, AS; is normal to that direction, and the line
integral is taken in the right-hand sense with respect "to the positive i direction. In
rectangular coordinates, for example, to compute the z component of the curl, the small
area AS = Ax Ay is selected in the x—y plane to be normal to the z direction (Fig.
2.6a). The right-hand sense of integration about the path with respect to the positive z
direction is as shown by the arrows of the figure. The line integral is then

— AxF,

x+Ax

— AyF,

{
i

+ AxF,

3§F-d1=AyFy

y+Ay x

y

We find F, atx + Axand F, aty + Ay by truncated Taylor series expansions

oF, oF,
F, =F| +Ay==; F, =F,| + Ax—2 @)
y+Ay y ay y x+Ax x ox x

So

oF
3gF~dlE(—y—£‘) Ax Ay
ox ay
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r4

F;

(x, 3 2), £y

Ay

Fy

x

FiG. 2.6a Path for line integral in definition of curl.

Then using the definition (1), we get

aF ., Yol
[curl F], = Ty Ok

ax ay )

because the expansions (2) become exact in the limit. Similarly, by taking the elements
of area in the y—z plane and x—z plane, respectively, we find

aF,  OF,
1F], = —= - — 4
[curl F], 3 P “)
OF.  dF,
ol B = ~ & ®)

These components may be multiplied by the corresponding unit vectors and added to
form the vector representing the curl:

OF. OF, OF,  OF. oF, 9F,
cul F = | — — 2| + 9| = - = +3| =2 - = 6)
ay 0z 0z ax ox ay

If this form is compared with the form of the cross product and the definition of the
vector operator V, Eq. 1.10(7), the above can logically be written as

X v z
a a4 o
crlF=VXF=|— — — @)
ox dy oz
F.\' Fy F.’

In deriving curl for other coordinate systems, the variation of line elements with co-
ordinates must be considered, just as the variation of surface elements with coordinates
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in spherical coordinates was considered in Sec. 1.11. (See Appendix 2.) Results for
circular cylindrical and spherical coordinates are given on the inside front cover.?

The name curl (or rotation as it is sometimes called) has some physical significance
in the sense that a finite value for the line integral taken in the vicinity of a point is
obtained if the curl is finite. The name should not be associated with the curvature of
the field lines, however, for a field consisting of closed circles may have zero curl nearly
everywhere, and a straight-line field varying in certain ways may have a finite curl. The
following examples illustrate these points.

Example 2.6a
CURL-FREE FIELD WITH CIRCULAR FI’ELD LINES

The magnetic field in the region surrounding a current iin a long straight round wire
was seen in Eq. 2.4(2) to be Hy = [, /27r. If we write this in rectangular coordinates
using sin ¢ = y/r, cos ¢ = x/r, and r* = x* + y?, we get

. Iy
H, = _Hqs sin ¢ = _Esz T }'2 3
I x
Hy~H¢COS¢~ETm (9)
H =0 (10)

as can be seen from Fig. 2.6b. Since there is no z component and no dependence on z,
(6) shows immediately that the x and y components of the curl are zero. Substituting
(8) and (9) into (6) with F = H we obtain

0H,  oH,
carlH =32— - — | =0 (11)

This result is found more naturally and directly for this broblem using the expression
for the curl in cylindrical coordinates found inside the front cover:

10H, 0H, < | 6H  oH, 100H,)  10H
VxH=¢p-2_222 ke Sl 5] = _ 2%
r|:r o dz :| * d{ 9z ar] * z[r ar r d¢ 12)

Since there is only an H ; and no z dependence, the first two components vanish. The
rand ¢ components are the transverse ones corresponding to x and y components. Since
there is no H, and rH 4 does not depend upon r, we see that V X H = 0 as shown
above.

3 As with the divergence (footnote 4 of Chapter 1), one cannot take the cross product of
V and the vector fo obtain the curl in a curvilinear coordinate system, but must use the
basic definition (1).
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A
bH,

Fie. 2.6b Resolution of H, of a line current into rectangular components (Ex. 2.6a).

Example 2.6b
FIELD WITH NONVANISHING CURL

The magnetic field inside a uniform current with circular symmetry was seen in Ex. 2.4c
to be Hy(r) = Ir/ 2ma®. As in the preceding example, we see that the symmetries
indicate the presence of only the z component of the curl in (12). Also, the second term
in the z component is zero. Thus

VXH=12

z

la(rH¢,) I
rooar  md?

(13)

N

Example 2.6¢
NONVANISHING CURL IN FIELD OF STRAIGHT PARALLEL VECTORS

A theoretically stable electron flow in a type of microwave electron tube called a planar
magnetron has an electron velocity distribution described by v = Zy and is shown in
Fig. 2.6¢c. We see there a vector function with all vectors straight and paralle]. It is
immediately evident by substitution of v in (6) that

Fic. 2.6¢ Electron flow in planar magnetron (Ex. 2.6c).
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curl v = %[curl v], = % # 0 (14)

It is instructive to see, by using the line-integral definition of the curl (1) why this result
obtains. All vectors and their spatial variations are in the y—z plane, and (6) shows
there can be only an x component of the curl. Then we can write for a small area
AS = Ay Az
[y + Ay) —u(y)Az

curl v, = lim ‘
[ ] AS—0 Ay Az

(15)

We see that the curl is nonzero because the velocity is larger on one side of the loop
than on the other. |

Example 2.6d |
CURL OF THE GRADIENT OF A SCALAR

Here we show the useful fact that the curl of the gradient of a scalar is zero. If we write

a 3 9
Poveo gy g% 0
ox ay |‘62

and substitute it in (6), we get

2 2 2 24\ 2 2
VxF:,n‘(_a_i_a_f)ﬁ( £ _ ag)iH(a_f“ a§> -
dy 9z 9z dy 0z dx dx0dz/) dx dy  dy ox

Since the order of the partial derivative operations is arbitrary V X F = 0. A partic-
ularly important example is the electrostatic field. The fact that V X E = 0 follows
immediately from either E = —V® or § E - dl = 0. We shall see in Chapter 3 that
these properties of E do not apply for time-varying fields.

2.7 CURL OF MAGNETIC FIELD

Now let us use the formulations of the last two sections to derive a new relation for
magnetic field. The line integral of H around an area AS; is substituted in the definition
of the curl, Eq. 2.6(1), to get

$H-d

[curl H]; = lim
] ASi—0 AS,

But § H - dl is the current through the area AS; by Eq. 2.4(1) so

curl H); = lim ————— =,
[ ] ASi—0 AS,‘ )

6]
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This relation holds for all three orthogonal components. If these are multiplied by the
corresponding unit vectors and added, we get the vector relation

cwlHAVXH=] @

This can be thought of as the equivalent of Eq. 2.4(1) for a differential path taken

around a point. Note that the curl H found in Eq. 2.6(13) is the current density, as
required by (2).

Example 2.7
CURRENT DENSITY AT SUPERCONDUCTOR SURFACE

If a sheet of superconductive material® is in a magnetic field H = 2H, parallel to its
surface, there is a penetration of H only a very short distance into the superconductor
as shown in Fig. 2.7. The decay of H. with distance is given by

H, = Hye */* ©)

where H, is the value at the surface and A, called the penetration depth, is a property
of the material. We can find the corresponding current density using (2) and the

i

Fic. 2.7 Penetration of magnetic field into a thick sheet of superconducting material.

Superconductors include lead, tin, niobium, and numerous other elements, alloys, and
compounds. They have zero dc resistance and other special properties below their crit-
ical temperatures. See, for example, V. Z. Kresin and S. A. Wolf, Fundamentals of Super-
conductivity, Plenum Press, New York, 1990.



90 Chapter 2 Stationary Magnetic Fields

expansion in Eq. 2.6(6): ‘ i

|
aI-I:{ HO
Jy = [Cllﬂ H]y = —Ex_ = A—e

—x/As

s

Thus, the current also is found only near the surface.

2.8 RELATION BETWEEN DIFFERENTIAL AND INTEGRAL FORMS
OF THE FIELD EQUATIONS

The differential form relating magnetic field to current density was derived from the
integral form through the definition of curl. One can proceed in reverse by using
Stokes’s theorem, which states that for a vector function F,

3§F-dl=L(euﬂF)-dsEL(VxF)-ds (1)

This theorem is made plausible by looking at a general surface as in Fig. 2.8a, breaking
it into elemental areas. For each differential area, the contribution (V X F) - dS gives
the line integral about that area by the definition of curl. If contributions from infini-
tesimal areas are summed over the surface, the line integral must disappear for all
internal areas, since a boundary is first traversed in one direction and then later in the
opposite direction in determining the contribution from an adjacent area. The only
places where these contributions do not disappear are along the outer boundary, so that

Fie. 2.8a Subdivision of arbitrary surface for profof of Stokes’s theorem.
{
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the result of the summation is then the line integral of the vector around the boundary
as stated in (1). It is recognized that the process is similar to the transformation from

the differential to the integral form of Gauss’s law through the divergence theorem in
Sec. 1.11. Then writing Stokes’s theorem for magnetic field, we have

éH-dl=J-(VxH)-dS 2)
s
But, by Eq. 2.7(2), the curl may be replaced by the current density:
§H~dl=f.]'d8 3)
s

The right side represents the current flow through the surface of which the path for the
line integration on the left is a boundary. Hence (3) is exactly equivalent to Eq. 2.4(1).

Example 2.8a
DEMONSTRATION OF STOKES'S THEOREM

Let us demonstrate Stokes’s theorem for a magnetic field that is part of an electromag-
netic wave in a certain kind of transmission structure. The field at a particular instant
of time is described by

H = §A cos %‘ @)

We will apply (2) to the area shown in Fig. 2.8b where the field distribution (4) is
illustrated. The line integral of (4) along the broken path is

GW

/////"///////// i
//// _

X
0 1

Fic. 2.8b Area for integration of field H to demonstrate the validity of Stokes’s theorem
(Ex. 2.8a).
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a 1 0 0
iﬁH-d1=f dex+f Hydy+f dex+J’ H, dy

0 0 a 1

=0+ Acosm+0— Acos0 = —24

where the facts that H, = 0 and H, 7 f(y) are used.
The curl of H in rectangular coordinates is
0H, T, X

VXH=2—2= —2A—sin—
ox a a

The integral of (6) over the surface bounded by the broken line in Fig. 2.8b is

a

a
T . TX »
f—A—sm—dx=Acos——
0 a a | al,

= —24

L(VXH)'dS

Since (5) and (7) give the same results, Stokes’s theorem (1) is illustrated.
|

®

©

M

Example 2.8b
PROOFTHATV -V X F =0

That V-V X F = 0 can be proved by using the expressi)ons in rectangular coordinates
as was done for V X Vi in Ex. 2.6d. Here we take a different approach that uses
Stokes’s theorem. Since Stokes’s theorem applies to any surface, we may treat the
surface shown in Fig. 2.8¢ and let the bounding line shrink to zero so the surface
becomes a closed one. Then the line integral on the left side of (2) vanishes and we

have

%(VXF)-dS=O
s

Line bounding
surface S

Fic. 2.8¢ Surface used in Ex. 2.8b.

@®
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We may then apply the divergence theorem (Sec. 1.11) to the vector V X F:
%(VXF)~dS=J-V-VdeV ®
s v

Since we saw in (8) that the left side is zero with an arbitrary choice of surface, the
integrand on the right side must vanish,
V-VXF=0 (10)

which was to be shown. This is a useful relation in the study of electromagnetic fields.

2.9 VECTOR MAGNETIC POTENTIAL

We introduce here another potential, which is often used as a conveniently calculated
quantity from which the magnetic field can be found. An integral expression for the

flux density can be obtained from Eq. 2.3(2) by multiplying by w for homogeneous
media:

ul'(r'y dl’ X R
J 4R M

It is shown in Appendix 3 that this can be broken into two steps by making use of
certain vector equivalences. The result gives

B(r) = V X A(r) @

B(r) =

where
! ’ dll

The current may be given as a vector density J in current per unit area spread over a
volume V'. Then, since I = J dS, where dS is the differential area element perpendicular
to J, and dl is in the direction of J, dS dl forms a volume element dV and the equivalent
to (3) is

14 dvl
Al) = f‘ i) & @

47R

In both (3) and (4), R is the distance from a current element of the integration to the
point at which A is to be computed. The function A, introduced as an intermediate step,
is computed as an integral over the given currents from (3) or (4) and then differentiated
in the manner defined by (2) to yield the magnetic field. Function A is called the
magnetic vector potential. Note that each element of A has the direction of the current
element producing it. It is analogous to the potential function of electrostatics, which
is found in terms of an integral over charges and then differentiated in a certain way to
yield the electric field. The magnetic potential A is different, however, because it is a
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vector, and does not have the simple physical significance of work done in moving
through the field that electrostatic potential has. Some physical pictures can be formed
but the student should not worry about these until more familiarity with the function
has been developed through certain examples.

Example 2.9a
VECTOR POTENTIAL AND MAGNETIC FIELD OF |A CURRENT ELEMENT

Here we show that the magnetic flux density of a current element found using (3) and
(2), in that order, is the same as the integrand of (1), which expresses Ampére’s law.
The magnetic vector potential A exists throughout the iregion surrounding the given
current element, as shown in Fig. 2.9a. From (3) we find

d
g ML

A=13A =
28 47r

®

since the origin of coordinates is positioned at the current element. As noted earlier dA
is parallel to the current element producing it. It is most convenient to use spherical

coordinates in this example. From the figure we see thatld, = A,cos fand A, = —A,
sin 6. The curl in spherical coordinates (from inside the|front cover) reduces to

blo ' a4
B=VXA==|=04) -

r|or Ao a6 ©

since A, = 0 and 8/d¢ = 0, by symmetry. Substituting A, and A, using (5), we find
R dz\ sin 6

1_=,=VxA=<;>(“Iz)s“’2 a

47 r

Note that dl’ X R is «i) dz r sin 0, so (7) is equivalent to the integrand in (1).

z {
3 A,

Fic. 2.9a Vector potential in region surrounding a current element.
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///7- P(x.y,0)
// I

—— / x==-a <~
dZ // \\\

S

z

iyl A
dz’ x=a —_—

I

FiG. 2.9b Parallel-wire transmission line.

Example 2.9b
VECTOR POTENTIAL AND FIELD OF A PARALLEL-WIRE TRANSMISSION LINE

Let us consider a parallel-wire transmission line of infinite length carrying current / in
one conductor and its return in the other distance 2a away. The coordinate system is
set up as in Fig. 2.9b. Since the field quantities do not vary with z, it is convenient to
calculate them in the plane z = 0. The conductors will first be taken as extending from
z = —Ltoz = L to avoid indeterminacies in the integrals. Since current is only in the
z direction, A by (3) will be in the z direction also. The contribution to A, from both
wires is

. r ul dz' B JL wl dz’
: L4V (x — a + y? + 22 ~L4mV(x + a? + y? + 2
2 [ - Idz' - 1dz" }
4 o\/(x—Aa)z-i~y2+z’2_()\/(,\'—Fa)2+y2+z”2

The intcgrals may be evaluated®:

I
A =L + Ve = a? + 2+ 27
2

— [ + Vx + a + y* + 22115

Now, as L is allowed to approach infinity, the upper limits of the two terms cancel.
Hence

A, =

In [(x + a)® + y2:| ®

4 L - @ + 7

5 Most integrals of this text can be found in standard handbooks such as the CRC Hand-
book of Chemistry and Physics (any recent edition); M. R. Spiegel, Mathematical Hand-
book, Schaum’s Outline Series, McGraw-Hill, 1968; or M. Abramowitz and I. A. Stegun
(Eds.), Handbook of Mathematical Functions, National Bureau of Standards Applied
Mathematics, Dover, New York, 1964. One of the most complete listingsis . S. Gradshteyn
and I. M. Ryzhik, Table of Integrals, Series, and Products (A. Jeffrey, Trans.), Academic
Press, San Diego, CA, 1980.
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If (2) is then applied, using the expression for curl in rectangular coordinates, we find

Hx=l%=i[ Y - Y ] )

way 27| (x+aP+y (- a?+y
1 0A I - +
H, = ____a_g=__ G 7a) 2 t za) 2 (10)
’ wox 2w (x—aP+y* &+ aF+y

2.10 DISTANT FIELD OF CURRENT LOOP: |Vi|AGNETIC DIPOLE

The magnetic field on the axis of a loop of current was derived in Ex. 2.3a. Here we
will find the magnetic vector potential and field at locations not restricted to the axis
but distant from the loop. The arrangement to be analyzed is shown in Fig. 2.10. For
any point (r, 6, ¢) at which A is to be found, some current elements / dl’ are oriented
such that they produce components of A in directions other than the ¢ direction. How-
ever, by the symmetry of the loop, equal and opposite amounts of such components
exist. As a result A is ¢ directed and is independent of the value of ¢ at which it is to
be found. For convenience, we choose to calculate A at the point (r, 8, 0). The ¢-directed
contribution of a differential element of current is |

_ pldl' cos ¢
T 4mR

dA, ®)

Fi6. 2.10 Coordinates for calculation of magnetic-dipole fields.
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where R is the distance from the element dl’ to (r, 6, 0). The total is found as the integral
around the loop
A = ﬂﬂgdll cos @' /._dgf“cos @' do’
¢ 4q R 4 Jo R

where a is the radius of the loop. The distance R can be expressed in terms of the radius
from the origin to (r, 6, 0) as )

@)

R>=7r%+ a®> — 2racos ¢ 3)

To get ra cos i we note that » cos ¢ is the projection of r onto the extension of the
radius line to d/'. Therefore

ra cos ¥ = ra sin 6 cos ¢’ C)

Substituting (4) into (3) and assuming r >> a, we find

1/2
R = r(l -2 gsin 6 cos ¢>')
-

or
a .
R7! "~'r“(l + ~ sin 0 cos qS') 5)
Utilizing this expression in (2), we find
2
Ay = %f (cos ¢ + gsin 6 cos® qb’) d¢’
0 ]

©)

_ ula amsin § w(ma*) sin 6
T 4 r B 4arr?

As was noted at the outset the result applies to any value of ¢. The components of B,
found by substituting (6) in Eq. 2.9(2), are

_ plma?
B, = Py cos 6 @)
_plmad®
By =" 5 sin 6 ®)
B, =0 ©)

The group of terms /7ra® can be given a special significance by comparison of (7)—(9)
with the fields of an electric dipole, Eq. 1.10(10). The identity of the functional form
of the fields has led to defining the magnitude of the magnetic dipole moment as

m = Ima® (10)

The dipole direction is along the § = 0 axis in Fig. 2.10 for the direction of / shown.
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The vector potential can be written in terms of the magn{atic dipole moment m as

A=—F0mx V(l) (11)
4qr r

where the partial derivatives in the gradient operation are with respect to the point of
observation of A. |

2.11 DIVERGENCE OF MAGNETIC FLUX DENSITY
|
As given by Eq. 2.9(2) (derived in Appendix 3), the magnetic flux density B can be
expressed as the curl of another vector A when the sources of B are currents. We have
shown in Ex. 2.8b that the divergence of the curl of any vector is zero. Thus,

V-B=0 ¢))]

A major difference between electric and magnetic fields is now apparent. The mag-
netic field must have zero divergence everywhere. That is, when the magnetic field is
due to currents, there are no sources of magnetic flux which correspond to the electric
charges as sources of electric flux. Fields with zero divergence such as these are con-
sequently often called source-free fields.

Magnetic field concepts are often developed from an exact parallel with electric fields
by considering the concept of isolated magnetic poles as sources of magnetic flux,
corresponding to the charges of electrostatics. The result of zero divergence then follows
because such poles have so far been found in nature only as equal and opposite pairs.
Physicists continue to search for isolated magnetic poles;j’ if they are found, a magnetic
charge density p,, will simply be added to the equations giving a finite V - B.

i

2.12 DIFFERENTIAL EQUATION FOR VECTOR MAGNETIC POTENTIAL
The differential equation for magnetic field in terms of chrrent density was developed
in Sec. 2.7:
VXH=]
If the relation for B as the curl of vector potential A is substituted,
VXV XA=ulJ | ¢))

This may be considered a differential equation relating Al to current density. It is more
common to write it in a different form utilizing the Laplacian of a vector function
defined in rectangular coordinates as the vector sum of the Laplacians of the three scalar
components: !

VA = VA, + VA, + VA, )

It may then be verified that, for rectangular coordinates |
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VXVXA=-VA + V(V-A) 3)

For other than rectangular coordinate systems, separation in the form (2) cannot be done
so simply and (3) may be taken as the definition of V2 of a vector.
With V- A = 0, as shown in Appendix 3 for statics, (3) and (1) give

A = —ul @

This is a vector equivalent of the Poisson equation first met in Sec. 1.12. It includes
three component scalar equations which are exactly of the Poisson form.

Example 2.1
VECTOR POTENTIAL AND FIELD OF UNIFORM CURRENT DENSITY FLOWING AXIALLY

Let us show that the appropriate form for the vector potential in a uniform flow of
z-directed current in a circularly cylindrical system is

A= —Eoee sy ®)
From (4) and (2),
L gy, L (PA PAN _
Jz - [.LVA: - ‘u(ax?_ + ayz) _JO (6)

From this we see that (5) is the appropriate form for vector potential in a cylindrical
conductor carrying a current of constant density J,. The magnetic field found from
5) is

1 —J
H=—(VxA)=—"2@% — @
I 2
In cylindrical coordinates, this is

H=$% ®)

which is the value of Eq. 2.4(5).

2.13 SCALAR MAGNETIC POTENTIAL FOR CURRENT-FREE REGIONS

In many problems concerned with the finding of magnetic fields, at least a part of the
region is current-free. The curl of the magnetic field vector H is then zero for such
current-free regions [Eq. 2.7(2)]. Any vector with zero curl may be represented as the



100 Chapter 2 Stationary Magnetic Fields

gradient of a scalar (see Ex. 2.6d). Thus the magnetic ffeld can be expressed for such

points as I

H= -V, | ey

where the minus sign is conventionally taken only to complete the analogy with elec-

trostatic fields. The vector potential applies to both curmrent-carrying and current-free

regions, but it is usually more convenient for the latter to use this scalar potential.
Since the divergence of the magnetic flux density B is everywhere zero,

V. uved, =0 ‘ 2)
Thus, for a homogeneous medium, ®,, satisfies Laplace’s equation
V2, =0 ‘ 3)
It will be observed from (1) that |
2 |
cDmZ - (I)ml = _—Jl H- C{“ 4

Thus, if the path of integration encircles a current, @,, does not have a unique value.
For if 1 and 2 are the same point in space and the path of integration encloses a current
I, two values of ®,,, differing by I, will be assigned to the point. To make the scalar
magnetic potential unique, we must restrict attention to regions which do not entirely
encircle currents. Suitable regions are called ‘‘simply connected’’ because any two
paths connecting a pair of points in the region form a loop which does not enclose any
exterior points. An example of a simply connected region between coaxial conductors
is shown in Fig. 2.13. The restriction to a simply connected region is not a serious
limitation once it is understood.

Fic. 2.13 Simply connected region between coaxial cylinders.
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The importance of the scalar potential for current-free regions is that it satisfies
Laplace’s equation, for which exist numerous methods of solution. The graphical and
numerical methods given in Chapter 1 for electrostatic fields are directly applicable, as
are the more powerful numerical methods, conformal transformations, and method of
separation of variables to be studied in Chapter 7.

2.14 BOUNDARY CONDITIONS FOR STATIC MAGNETIC FIELDS

The boundary conditions at an interface between two regions with different permea-
bilities can be found in the same way as was done for static electric fields in Sec. 1.14.
Consider a volume in the shape of a pillbox enclosing the boundary between the two
media as shown in Fig. 2.14. The surfaces AS of the volume are considered to be
arbitrarily small so that the normal flux density B, does not vary across the surface.
Also, the thickness of the pillbox is vanishingly small so that there is negligible flux
flowing through the side wall. The net outward flux from the box is

Bnl AS = Bn2 AS or Bnl = an (1)

where the sense of B,, is as shown in the figure.
The relation between transverse magnetic fields may be found by integrating the
magnetic field H along a line enclosing the interface plane as shown in Fig. 2.14,

f[;H-dI=H,1A1—H,2A1=J:AI @)

where J; is a surface current in amperes per meter width flowing in the direction shown.

Fic. 2.14 Magnetic fields at boundary between two different media.
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The lengths Al of the sides are arbitrarily small so H, may be considered uniform. The
other legs of the integration path are effectively reduced to zero length. From (2)
[

H, — H, = J; ©)
There is a discontinuity of the tangential field at the boundary between two regions
equal to any surface current which may exist on the boundary. With direction
information included, where fi is the unit vector normal to the surface,

i X H - H)=1J, )

Although the concept of a surface current is an idealization, it is useful when the
depth of current penetration into a conductor is small, as in the skin effect to be studied
later. In problems involving the scalar magnetic potential, continuity of H, where J; =
0 is ensured by taking ®,, to be continuous across the boundary. Where surface currents
exist, (4) leads to %

. i
i X Ve, — Vo, ) =J; (5)
as may be seen by combining (3) with the definition of ®,,, Eq. 2.13(1).

2,15 MATERIALS WITH PERMANENT MAGNETIZATION
f
Permanent magnets have a remnant value of magnetization [defined in Eq. 2.3(3)] when
all applied fields are removed. Magnetic materials are discussed in more detail in Chap-
ter 13, but here we consider some examples with permanent magnetization M, and no
true current flow. There are two ways of analyzing such problems: through the scalar
magnetic potential and through the vector potential.

Use of Scalar Magnetic Potential Since current density J is zero, we may derive
H from a scalar potential as in Sec. 2.13:

H= -V, ¢))
Now using the definition of magnetization from Eq. 2.3:(3),
E
B 5
H=—-M ! 2)
Ho

If the divergence of (2) is taken, with V - B = 0 utilized, we can write

Ve, = b= ©
Mo
where |
Pm = —HV M )

In this formulation we see that we have a Poisson equation for potential ®,,, with an
equivalent magnetic charge density in the region proportional to the divergence of
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magnetization. For a uniform magnetization, the divergence is zero and ®,, satisfies
Laplace’s equation. At the boundaries of the magnet, however, integration of (3) would
show that there is an equivalent magnetic surface charge density p,,, given by

Psm = /’LOﬁ ‘M (5)

The arguments for this are similar to those for surface charge density p, when there is
adiscontinuity in D, as explained in Sec. 1.14. We will illustrate this through an example
after giving a formulation using the vector potential.

Use of Vector Magnetic Potential If we write B as curl of vector potential A as
in Eq. 2.9(2) and use the definition of magnetization,
B=pH+M=VXA 6)
we can take the curl of this equation, using V X H = 0 since J = 0, to write
VXVXA=pl, ™
where
Jo, =V XM 8)

So by comparison with Eq. 2.12(1), the problem is equivalent to one with internal
currents in free space proportional to the curl of magnetization. Inside a region of
uniform magnetization, the curl is zero and there are no internal currents. At the bound-
ary of the magnetic material, a surface integral of (8) over the area enclosed by the path
used to get Eq. 2.14(2) and application of Stokes’s theorem give

§;M-dl=fjeq-ds
N

In the same way as for Eq. 2.14(4), this gives an equivalent surface current
Jegds =M X 1 )

since M = 0 outside the magnetic material. So in this formulation the magnet is re-
placed by a system of volume and surface currents from which magnetic field may be
found through use of the vector potential, or directly by using Ampere’s law. Example
2.15b illustrates this procedure.

Example 2.15a
UNIFORMLY MAGNETIZED SPHERE

Consider first a sphere of magnetic material with uniform magnetization M, in the z
direction as in Fig. 2.15a using the method with scalar magnetic potential. Since M is
uniform, there is no volume charge by (4), but if space surrounds the sphere, there is
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FiG. 2.15a Sphere of radius a with uniform magnetization ZM,. Field lines (H or B) outside
the sphere shown dashed. '

a surface magnetic charge density at r = a given by |
Psm = I‘LOMO cos 6 j (10)

Solutions of (3), in spherical coordinates with a variation corresponding to (10) and
P = 0, are |
ml

b =%cos€ r<¢£
(11)

|
Ca? ‘
®,, = ’Z cos 6 r>‘a
- \
\
as can be verified by substitution in the expression for V2® = 0 in spherical coordinates
on the inside front cover. The surface magnetic charge given by (10) gives a disconti-

nuity in derivative, |

b, D, _ i
,u,o': P w Jma = ,LLOA!([O cos 6 (12)
from which i
Mya
C = —3"— | (13)

Thus for r < a, using (1) in spherical coordinates

My
3 (14)

i
M \ |

H = -?°*[f'cosf)—ﬂsin6]%-2
|

|
|
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which is a uniform field within the sphere. For rr > a,

Md .
H = 3‘)"; [2f cos 6 + O sin 6] (15)

which are curves (shown dashed in Fig. 2.154) similar to those outside a magnetic
dipole (Sec. 2.10).

Examplie 2.15b
ROUND ROD WITH UNIFORM MAGNETIZATION

A circular cylindrical bar magnet of length / having uniform magnetization in the axial
direction is shown in Fig. 2.15b. Using the second formulation given above, we see
from (8) that there are no equivalent volume currents since V. X M = 0, but there is
a surface current at the discontinuous boundary rr = a:

Js = d’\)Mo (]-6)

We see that this problem is then identical to that of the solenoid of length / with current
per unit length given by (16) insofar as the calculation of A (and hence B) is concerned.
As noted in Ex. 2.3c, it is difficult to calculate field lines for an off-axis point, but B
lines will appear somewhat as shown dashed in Fig. 2.15b. Lines of magnetic field H
will be of the same form outside the magnet, but will be of different form inside through
the vector addition H = B/u, — M.
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Fie. 2.15b Cylinder of radius @ and length ! with magnetization ZM,. Flux density lines B
shown dashed. (H lines are of the same form outside the magnet.)
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Magnetic Field Energgy

2.16 ENERGY OF A STATIC MAGNETIC FIELD

In considering the energy of a magnetic field, it would appear by analogy with Sec.
1.22 that we should consider the work done in bringing| a group of current elements
together from infinity. This point of view is correct in principle, but not only is it more
difficult to carry out than for charges because of the vector nature of currents, but it
also requires consideration of time-varying effects as shown in references deriving the
relation from this point of view.5 We will consequently set down the result at this point,
waiting for further discussion until we derive a most important general energy rela-
tionship in Chapter 3. The general relation for nonlinear materials, corresponding to
1.22(9) for electric fields, is |

=LH-dBdV | (1)

where dUy is the energy added to the system when B|is changed by a differential
amount (possibly different amounts for different positions|within the volume). For linear
materials, H is proportional to B so (1) may be integrated over B to give

=1J-B-Ha’V=J"—L12dV @
2 Jy v 2

The analogy to Eq. 1.22(6) is apparent, and here also jwe interpret the energy of a
system of sources as actually stored in the fields produced by those sources. The result
is consistent with the inductive circuit energy term, 3LI?, when circuit concepts hold
and will be utilized in the following section.

Example 2.16a
ENERGY STORAGE IN SUPERCONDUCTING SOLENOID

It has been proposed that energy stored in large supercorflducting coils be used to meet
peaks in electric power demand. Superconducting coils iare chosen because their zero
dc resistance allows very large currents to be carried with zero power loss (though, of
course, refrigeration power must be supplied). To be useful such a storage system must
be capable of providing about 50 MW for 6 hours, that|is, storing an energy of about
105 M. Let us assume the coil is a solenoid and that the field is uniform, and we wish
to find the required coil properties and current. The field from Eq. 2.4(7) is H, = nl so

& J. A. Stratton, Electromagnetic Theory, pp. 118-124, MchraW-Hill, New York, 1941.
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B. = pnl. The energy from (2), for volume V, is
Uy = 3mnl)*V

For a realistic current of 1000 A and flux density of 15 T, a coil of 27-m diameter and
20-m length with 1.2 X 10 turns/m would give the required energy. The most prom-
ising coil shape is actually a toroid but it would have dimensions and currents of the
same magnitude as calculated in this example.

Example 2.16b
ENERGY DISSIPATION IN HYSTERETIC MATERIALS

We will see here how energy loss in hysteretic materials can be explained in terms of
their nonlinear B—H relations. A typical hysteretic relation is shown in Fig. 2.16. We
will assume an isotropic material so that B - H = BH. The energy required for one
traversal of the loop by varying H from a large negative value to a large positive value
and back again can be found from (1). The differential energy is shown as a shaded
bar on the hysteresis loop in Fig. 2.16. When the field is decreased, a portion of the
energy indicated by the part of the bar outside the loop is returned to the field. The
result of integrating around the loop is that total expended energy per unit volume is
equal to the area of the loop.

dB

FiIG. 2.16 Hysteretic, nonlinear B—H relation.
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2.17 INDUCTANCE FROM ENERGY STORAGE; INTERNAL INDUCTANCE

It was shown in Sec. 2.16 that the magnetic energy may be found by integrating an
energy density of 3uH? throughout the volume of significant fields. From a circuit point
of view, this is known to be 1LI?, where I is the instantaneous current flow through the
inductance. Equating these two forms gives !

|

e = | Hpe2
sLI* = fv 5 H* dv | {1

The form of (1) is useful as an alternate to the flux linkage method of calculating
inductance given in Sec. 2.5. It is especially convenient for problems that would require
consideration of partial linkages if done by the method of flux linkages. Problems of
calculating internal inductance, defined in Sec. 2.5, are of this nature.

Example 2.17 |
INTERNAL INDUCTANCE OF CONDUCTORS WI[TH UNIFORM CURRENT
DISTRIBUTION IN A COAXIAL TRANSMISSION LINE

As an example of the use of the energy method of inductance calculation, we will find
the internal inductances for the two conductors of a coaxial transmission line under the
assumption that the current is distributed uniformly in the conductors. The result for
the inner conductor applies more generally to any straight, round wire with a uni-
form current distribution. The magnetic field in the inner conductor of Fig. 2.4b
(Ex. 2.4c¢) is

Ir
Hy = S r<a 2)
For a unit length, utilizing (1), |
2
a Ir ' #‘[2 a4
1772 = j it 2amr dr = L=
2 0 2 \2ma2) TV T 4ngt 2 ®
or |
L= ;‘—7‘; H/m | @

The magnetic field in the outer conductor (Prob. 2.4a) is

I i
H@r) = @ = (’— - r) ®)

Substituting (5) in (1) we find

_ k| c*Inc/b b — 3c?
27 | (c® — B2 4(c* - b?)

] H/m (6)
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For frequencies low enough to assume uniform current distribution in the conductors,

the total inductance per unit length for the coaxial line is the sum of (4), (6), and
Eq. 2.5(6).

2.2a

2.2b

2.2¢

2.2a*

PROBLEMS

Assuming that each electron constituting the current in a differential length of conduc-
tor is acted on by a force —ev X B, show that the total force is equal to that given by
Eq. 2.2(1). How is the force on the electrons transferred to the structure of the wire?

The Hall effect uses motion of charges in crossed fields within a semiconductor as
shown in Fig. P2.2b to measure important properties of a semiconductor. Consider a
p-type material so that the charge carriers are holes of charge + e. Electric field E, ap-
plied in the x direction causes a current I, = wdoFE, to flow. The magnetic field causes
a buildup of positive charge on the plate at y = 0 and an equal negative charge on the
top plate because of the velocity w,E, of the holes. The field produced by these charges
on the bottom and top plates Ey is exactly of the magnitude to counteract the ev X B
force on the holes so that, in steady state, the flow is only in the x direction. Show how
the Hall mobility wuy can be determined from measurement of /, and V.

Fic. P2.2b

Show the following:
AXB+C)=AXB+AXC
AX(BXC) =BA-C —CA-B)
A-BXC)=B-(CxXxA)=C-(AXB)

Cycloidal motion can occur when a particle of charge g and mass m is placed in crossed
electric and magnetic fields. To demonstrate this, take a uniform electric field E; in the
y direction and uniform magnetic flux density By in the x direction. The charge starts at
the coordinate origin at time ¢ = 0 with zero velocity. Show that the trajectory can be
written in the form (z — Rwyt)> + (y — R)?> = R?, where R = Ey/wyB, and w, =
qB,/m. Explain the motion.
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2.3a

2.3b

2.3c

2.3d

2.3e

2.4a

2.4b

2.4c

2.4d

Chapter 2 Stationary Magnetic l‘ijelds

A loop of wire is formed by two semicircles, the inner of radius @ and the outer of
radius b, joined by radial line segments at ¢ = 0 and ¢ =  (Fig. P2.3a). Find the
magnetic field at the origin.

Fi6. P2.3a i
|

Direct current /, flows in a square loop of wire having sides of length 2a. Find the
magnetic field on the axis at a point z from the plane of' the loop.

Represent a solenoid of finite length L and radius a having n turns per meter by a con-
tinuous sheet of circumnferential current. Find the axial magnetic field at the center of
the solenoid and determine the length for which the field is one-half that of the infinite

solenoid. |

Show that the magnetic field on axis of a long solenmd'at the ends is half the value for
an infinite solenoid.

An arrangement that can provide a region of relatively uniform fields consists of a pair
of parallel, coaxial loops; the uniform-field region is on the axis midway between the
loops. Show that the axial magnetic field, expressed as a Taylor series expansion along
the axis about the point midway between the coils, will have zero first, second, and
third derivatives if the loop radii a are equal to the spacmg d of the loops. This is the
so-called Helmholtz configuration. \

For the coaxial line of Fig. 2.4b, find the magnetic ﬁeld for b < r < ¢, assuming that
current is distributed uniformly over the conductor cross section.

A certain kind of electron beam of circular cross section contains a current density J. =
Joll = (r/a)*]. Find H 4(r) inside the beam.

Express the magnetic field about a long line current in rectangular coordinate compo-
nents, taking the wire axis as the z axis, and evaluate § H - dl about a square path in the
x—y plane from (=1, —1)to (1, —1) to (1, 1) to (— 1J 1) back to (—1, —1). Also
evaluate the integral about the path from (—1, 1) to (1; 1) to (1, 2) to (—1, 2) back to
(—1, 1). Comment on the two resuits. |

A long thin wire carries a current /; in the positive z dilrection along the axis of a cylin-
drical coordinate system as shown in Fig. P2.44. A thin rectangular loop of wire lies in
a plane containing the axis. The loop contains the regic’)n 0<=z=bhR—-al2=r=
R + a/2 and carries a current /, which has the direction of I; on the side nearest the

|
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Fic. P2.4d

axis. Find the vector force on each side of the loop and the resulting force on the entire
loop.

Consider a round straight wire carrying a uniform current density J throughout, except
for a round cylindrical void parallel with the wire axis so that the cross section is con-
stant. Call the radius of the wire c, the radius of the hole b, and the distance of the
center of the hole from the center of the wire a. Take b < a <cand b < ¢ — a. Use
superposition to find the field H as a function of position along a radial line through the
center of the hole for all values of radius from the center of the wire.

2.4f A demonstration can be given that a thin metal tube can be crushed by magnetic forces

24g

2.5

2.6a
2.6b

2.6¢
2.7

by passing current through it. Take the radius of the tube to be 2 cm and the magnetic
field at which failure of the metal occurs as 9 Wb/m?. (i) What is the maximum current
that could flow axially along the tube before it would be crushed by the magnetic forces
arising from this current? (ii) What is the force per unit area on the surface of the tub-
ing under this condition?

For an infinitely long cylindrical hollow pipe of any cross section carrying current along
the pipe, magnetic field within the hollow portion is zero. Show why.

A coaxial transmission line with inner conductor of radius a and outer conductor of

radius b has a coaxial cylindrical ferrite of permeability ., extending from r = a to
r = d (with d < b), and air from radius d to b. Find the external inductance per unit
length.

Find the curl of a vector field F = %x%z* + §y%* + 2x%y%
By using the rectangular coordinate forms show that

VX @F) = ¢V XF—-FXVy
where F is any vector function and ¢ any scalar function.
Derive the expression for curl in the spherical coordinate system.

For the coaxial line of Fig. 2.4b, express the magnetic field found in Ex. 2.4b and Prob.
2.4a in rectangular coordinates and find the curl in the four regions, r < a,a <r <,
b < r < ¢, r> c. Comment on the results.

Show that V X Vi = 0 by integrating over an arbitrary surface and applying Stokes's
theorem.
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2.9a Check the results Egs. 2.9(9) and (10) by adding vectorially the magnetic field from the
individual wires, using the result of Ex. 2.4a.

2.9b* A square loop of thin wire lies in the x—y plane extending from (—a, —a) to (a, —a)
to (a, a) to (—a, a) back to (—a, —a) and carries current / in that sense of circulation.
Find A and H, for any point (x, y, z).

2.9¢* A circular loop of thin wire carries current /. Find A for a point distance z from the
plane of the loop, and radius - from the axis, for /z << 1. Use this to find the expres-
sion for magnetic field on the axis.

2.9d Show that the line integral of vector potential A about a closed path is equal to the

magnetic flux enclosed, i
5{; A-dl = f B-dS
s

Apply this to find the form of A inside the long solenoid of Ex. 2.4d.

2.9e For an infinite single-wire line of current, show that A, as calculated in Ex. 2.9b is in-
finite. Then show that if vector potential is calculated for a finite length —L <z <L
and B calculated from this before letting L approach infinity, the correct value of B is
obtained. |

2.9f As an exercise in using the vector potential, consider a fvery long thin conducting sheet
having a width b carrying a uniformly distributed direc’t current / in the direction of its
length. Show that if the sheet is assumed to lie in the x—z plane with the z axis along its
centerline, the magnetic field about the strip will be given by

I b/2 +x . _ b/2—x
H,= ——(tan™! b2 + = + tan~! b2 - x
' 2mb | y

I (b/2 + xP? +y*| |
H, = oS In [m:l i

2.10 Show that the torque on a small loop of current can be|expressed as 7 = m X B.
2.12a Show that VA = 0 for the vector potential around a f)air of currents, Eq. 2.9(8).
2.12b Use the rectangular coordinate forms to prove Eq. 2.12;(3).

2.12¢ A certain current density is said to produce within itself a vector potential having the
form A = 2Cr~? in circular cylindrical coordinates where C is a constant. Find the
divergence of A, current density, and magnetic field, assuming the medium to be free
i
space.

2.12d We saw in Ex. 2.7 that magnetic field in a supercondu_‘ctor decays from the surface as
H, = Hye ™ */*
where z is parallel to the plane of the surface and x is Eperpf:ndicr.lla.r to the surface. Find

the corresponding vector potential A, and from it the current density comparing with
the result of Ex. 2.7.

2.13a Show whether either of the following vector fields can be obtained from a scalar poten-
tial, and give the potential function if applicable: !

F = £3y% + §6xyz + 23y%x
F=2%3y + y2x + 24 |
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Find the form of scalar magnetic potential for the region between conductors as shown
in Fig. 2.13, defined for the region 0 = ¢ < 247; similarly for the region outside the
outer conductor. Current / flows in the inner conductor and the return current in the
outer one.

Consider the boundary between free space and a plane superconductor with nearby par-
allel line current / at x = 4. It is the nature of a superconductor that when placed in a
weak magnetic field, currents flow in such a way as to eliminate flux inside the super-
conductor so that B, at the surface is zero, as is the tangential H inside the supercon-
ductor. Show that fields in the free-space region x > 0 can be found by replacing the
superconductor with an image current at x = —d carrying current —/. Find the mag-
netic field at x = 0+ and from this the surface current density J,.

For the problem of Fig. 2.15b, what magnetic charge distribution would be obtained for
the formulation in terms of equivalent magnetic charges? How would this be modified
if magnetization is inhomogeneous as defined below?

M = M1 + k2)
Show that Eq. 2.16(1) leads to (2) for linear, isotropic materials.

Assume that the material having the B—H relation shown in Fig. 2.16 saturates at B =
1000 G and estimate graphically the energy per unit volume for one complete traversal
of the hysteresis loop.

Find the external inductance per unit length for the arrangement of Prob. 2.5 from en-
ergy considerations.

Find the internal inductance per unit length for the parallel-plane transmission line of
Fig. 2.5¢ if current is assumed of uniform density in each of the conductors.
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3.1 INTRODUCTION '

The laws of static electric and magnetic fields have been studied in Chapters 1 and 2.
It has been noted that these are useful in predicting effects for many time-varying
problems, but there are important dynamic effects not @escribed by the static relations,
so other time-varying problems require a more complete formulation. One important
dynamic effect is the generation of electric fields by time-varying magnetic fields as
expressed through Faraday’s law. A second is the complementary effect whereby time-
varying electric fields produce magnetic fields. This latter effect is expressed through
the concept of displacement current, introduced by Ma_jtxwell‘

Faraday’s law is well known to us through its importance in transformers, motors,
generators, induction heaters, and similar devices. The effect can be simply demon-
strated by moving a coil of wire through the field of a strong permanent magnet and
noting the trace on an oscilloscope connected to the coil (Fig. 3.1a). With readily
available magnets and practical numbers of turns in the coil, movement by hand will
generate millivolts, and such voltages are readily observed on the oscilloscope. An
alternative demonstration utilizes an electromagnet with its flux threading a fixed coil.
A switch to turn on and off the current in the electromagnet causes buildup and decay
of the magnetic field and generates the voltage to be observed.

The above-described demonstrations and useful devices utilize induced effects in
conductors. An interesting example showing that changing magnetic fields induce elec-
tric fields in space is that of the betatron. This useful particle accelerator, illustrated in
Fig. 3.1b, accelerates electrons or other charged particles by means of a circumferential
electric field induced by a changing magnetic field between poles N and S of an elec-
tromagnet. The charges are in an evacuated chamber, clearly illustrating that Faraday’s
law applies in space as well as along conductors.

The second dynamic effect, referred to above as aj displacement current effect, is
probably best known to us through the concept of a capacitance current. We may,
howeyver, think of this only as current in the conductors to capacitor terminals, supplying
the time rate of change of charge on capacitor plates. We shall see that the changing
electric flux in the dielectric between plates contributes to magnetic fields, just as does
conduction current, and acts to complete the current path. Displacement currents also

114
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Fic. 3.1a Experimental arrangement to demonstrate the induced voltage predicted by Faraday’s

law. Coil can be moved with sufficient speed by hand to display the induced voltage on a simple
oscilloscope.

exist in the vicinity of moving charges, and so are important in vacuum tubes or solid-
state electron devices. For example, time-varying effects in the Schottky barrier of
Ex. 1.4a or the pn junction of Sec. 1.16 produce displacement currents in the respective
depletion regions. Effects of these displacement currents must be understood in the
analysis of devices using such junctions.

There is a far-reaching consequence of the fact that changing magnetic flux density
produces a change in electric field and vice versa: it leads to propagation of electro-

Fic. 3.1b Schematic illustration of a betatron, which is used to accelerate electrons by means
of an electric field induced by a changing magnetic field.
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magnetic waves. In general, wave phenomena result wihen there are two forms of en-
ergy, and the presence of a time rate of change of one|leads to a change of the other.
In a sound wave, for example, an initial pressure variation in air (potential energy) in
one location causes a motion of the air molecules (hnbtic energy) that varies both in
time and in space. This builds up excess pressure at another position, and the effect
continues. Similarly, changing the magnetic field (or flux density) at one position gen-
erates a change of electric field in both time and space, by Faraday’s law. The subse-
quent change of electric field produces a change of magnetic field through the displace-
ment current, and so on. In energy terms, the energy interchanges between electric and
magnetic types as the wave progresses. !

Electromagnetic waves exist in nature in the radiation that takes place when atoms
or molecules change from one energy state to a lower jone, with frequencies from the
microwave through visible into x-ray regions of the spectrum. (Still lower frequencies
are generated by lightming and other natural fluctuations.) These natural radiations are
utilized in astronomy and radio astronomy. Telecommunications, navigational guid-
ance, radar, and power transmission depend upon our ability to generate, guide, store,
radiate, receive, and detect electromagnetic waves. This involves many kinds of struc-
tures whose properties the designer must be able to predict. The complete set of laws
for time-varying electromagnetic phenomena is known: as Maxwell’s equations and is
central to such predictions. |

Large-Scale and Differential Forms of Maxwell's Equations

3.2 VOLTAGES INDUCED BY CHANGIN% MAGNETIC FIELDS

Faraday discovered experimentally that a voltage is induced in a conducting circuit
when the magnetic field linking that circuit is altered.{ The voltage is proportional to
the time rate of change of magnetic flux linking the circuit. For a circuit of » turns, the
induced voltage V can be written !

|
W |

V=n—7—

a0 €]

where i, is the magnetic flux linking each turn of the ?coil. This equation may be used

directly to find the voltage induced in the secondary coil of a transformer, for example,

or to find the voltage induced in a single circuit because of a time-varying current

interacting with the self-inductance of that circuit. For an electric machine, such as a

generator or a motor, the change in flux linkages to be; used in (1) may be found from

the movement of the coil of the machine through a spatially variable magnetic field.
|
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Faraday’s experiments included both stationary and moving systems. The question of
moving systems may be approached in several ways and will be discussed more in the
following section.

One very important generalization of (1) is to a path in space or other nonconducting
medium. Such an extension is plausible since the resistance of the path does not appear
in the equation. Nevertheless the extension should have experimental verification and
it does. Much of the experimental support comes from the wave behavior to be studied
in the remainder of the book. As described in Sec. 3.1, the betatron' accelerates charged
particles in a vacuum by means of an electric field induced by a changing magnetic
field, as predicted by Faraday’s law. (See Prob. 3.2c.)

Before defining Faraday’s law more precisely, we should be clear about several
definitions. By voltage between two points along a specified path, we mean the negative
line integral of electric field between the points along that path. For static fields, we
saw that the line integral is independent of the path and equal to the potential difference
between the two points, but this is not true when there are contributions from Faraday’s
law. When there is a contribution from changing magnetic flux, the voltage about a
closed path is frequently called the electromotive force (emf) of that path.

emf = voltage about closed path = —§ E - dl @)

1t is equal, by Faraday’s law, to the time rate of change of magnetic flux through the
path. For a circuit which is not moving,

M, 9
fﬁE dl = o c'h‘sB ds 3)
where the flux i, is found by evaluating the normal component of flux density B over
any surface which has the desired path as its boundary, as indicated by the last term in
(3). The negative sign is introduced in the law to agree with the sense relations revealed
by experiment, using the usual right-hand convention in the integrals of (3). Thus, as
in Fig. 3.2a, if the rate of change of flux is positive in the directions shown by the
vertical arrow, the line integral will be positive in the direction shown—opposite to the
conventional right-hand positive direction. If there are several turns, the line integral
of (3) is taken about all of them, and if flux through each is the same, we have the form
first stated in (1).

T D. W. Kerst and R. Serber, Phys. Rev. 60, 53 (1941).

Sense of posmve at

Posmve sense Sense
of positive
nght hand
convention §E -dl

Fic. 3.2a Sense relations for Faraday’s law.
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To transform (3) to differential equation form, we can apply Stokes’s theorem /Sec.
2.8) to the left side of (3) and move the time differentiation inside the integral:

B,
f(VxE)-dS=—f—i'dS )
N s ot |
For this equation to be valid for an arbitrary surface, the integrands must be equal so
that }
B

VXE= - |
a

3)
Faraday’s law (4) of course reduces to the static case when time derivatives are zero
and, as we saw in Sec. 1.7, the line integral of electric field about a closed path is then
zero. For the time-varying field it is not in general zero, showing that work can be done
in taking a charge about a closed path in such a field. This work comes from the
changing stored energy of the magnetic field. |

Example 3.2 ‘_
AIR BREAKDOWN FROM INDUCED ELECTROMOTIVE FORCE
I

Consider the possibility of an ionizing breakdown in air because of electric fields gen-
erated by changing magnetic fields. An axially symmetric electromagnet (Fig. 3.2b) has

Fic. 3.2b Electromagnet with time-varying current producing a time-varying magnetic field.
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radius 0.20 m and has essentially uniform field up to this radius and negligible field
beyond it. Suppose that it is desired to raise magnetic field from zero to 10 T (tesla)
linearly with time in as short a time 7 as possible without such breakdown. Because of
the axial symmetry we can write Faraday’s law for a loop of radius r as
9B, B
2ar|Ey| = mr? = = qpp? 2 6

Eyl = 7 . (6)
Electric field is thus maximum at the outer radius of 0.20 m. If we take breakdown
strength of air as 3 X 10° V/m, then

e e e et )

3.3 FARADAY’S LAW FOR A MOVING SYSTEM

For the use of Eq. 3.2(1) for a moving system, one must find the change of magnetic
flux threading a circuit as it moves through the field. A simple and classical example
is that of an elemental ac generator as pictured in Fig. 3.3a. This indicates a single
rectangular loop rotating at constant angular frequency ) in the uniform field B, be-
tween the two pole pieces. When the plane of the loop is at angle ¢ with respect to the
horizontal axis, the magnetic flux passing through it is

Y, = 2Byal sin ¢ 1)
But angle ¢ changes with time and may be written )r. Thus
W, = 2Bgal sin 2)

And if voltage is the rate of change of this flux (neglecting signs),

Fic. 3.3a Elemental generator with rotating loop between permanent magnets.



120 Chapter 3 Maxwell's Equations

A
dt

Thus we see the sinusoidal ac voltage produced by this basic generator. Now let us
introduce a slightly different point of view to get the same answer. A point of view
used effectively by Faraday is that the electric field of the moving conductor is generated
by its motion through, and hence ‘‘cutting’’ of, the lines of force. Faraday gave much
physical sigificance to the flux tubes and lines of force This point of view can be
developed rigorously by writing the time derivative on the right side of Eq. 3.2(3) as a
total derivative instead of a partial derivative:

|
V= = 20Byal cos (Ut 3)

%E dl—-——fB ds 4

For a closed path moving in space with velomty v, this may be transformed by a vector
transformation developed by Helmholtz,? which, with V-B=0,is

fﬁE dl——f[——VX(vXB)] (5)

|
The first term on the right is the one we have seen before The second term gives an
added contribution to emf and, by use of Stokes’s them‘rem, may be written as the line
integral of v X B about the closed path. The result may be interpreted as a motional

electric field given at each point of the circuit path by

E,=vXB 6)
In the example of Fig. 3.3a, the motional field in the upper conductor, by (6), is
E,.. = (a)B, cos ¢ ' )

That in the lower conductor is the negative of this. There is no motional field along the
side elements since v X B gives a contribution normal to the wires for these sides.
Thus the line integral about the loop yields

§ E - dl = laQB, cos (it — (—1af)B, cos &").t) = 21af)B, cos (¢ ®)

which is identical to (3). |
The differential form of Faraday’s law, Eq. 3.2(5), may be transformed to a set of
moving coordinates with the same result. This may be done by a Galilean transformation
for low velocities and by a Lorentz transformation for relativistic velocities.? Although
relativity is beyond the scope of this text, it is important to know that Maxwell’s equa-
tions are consistent with the theory of relativity, although Einstein developed that theory
later. Their invariance to Lorentz transformations, in fact, had much to do with the
development of the theory of special relativity.
|

2 See, for example, C. T. Tai, Proc. |EEE 60, 936 (1972).
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L =

B, = Cx

<

Fie. 3.3b Rectangular loop of wire moving through magnetic field which varies with distance.

Example 3.3
RECTANGULAR LOOP MOVING THROUGH INHOMOGENEOUS FIELD

If a loop of wire is moved through a region of static magnetic field which is a function
of position, the flux threading the loop changes as the loop moves and an emf is gen-
erated. Consider the rectangular loop of wire (Fig. 3.3b) translated in the x direction
with velocity v through a z-directed static magnetic field which varies linearly with x,
B, = Cx. If the left-hand edge is at x = Q at ¢ = O, it is at x = vt at time ¢, and the
magnetic flux threading the loop is

9 vt+a

Ut +a
fB~ds=bf Cxdx = bC =
S vt 2

= ?;—C Qut + a) )

vt

The induced emf is then the time rate of change of this flux,
d
—DE-dl =— | B-dS = baCv (10)
dt Js
This result can be checked by finding the motional field in the four sides using (6). The

field v X B is normal to the wires along the top and bottom. On the left it is —vCx
and on the right side, —vC(x + a). Thus the integral is

_56 E - dl = vCbhb(x + a) — vCbx = baCv an
agreeing with the result (10).

3.4 CONSERVATION OF CHARGE AND THE CONCEPT
OF DISPLACEMENT CURRENT

Faraday’s law is but one of the fundamental laws for changing fields. Let us assume
for the moment that certain of the laws derived for static fields in Chapters 1 and 2 can
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be extended simply to time-varying fields. We will write the divergence of electric and
magnetic fields in exactly the same form as in statics, with the understanding that all
field and source quantities are functions of time as well as of space. For the curl of
electric field we take the result of Faraday’s law, Eq. 3.2(5). For the curl of magnetic
field, we take for the time being the form from statics, Eq. 2.7(2).

V-D=p (1)

V-B=0 f o)
B

VXE=-—" 3)

VXH=] 4

An elimination among these equations can be made to give an equation relating
charge and current. We would expect this to show that however p varies with space or
time, total charge is conserved. If current flows out of any volume, the amount of charge
inside must decrease, and if current flows in, charge inside increases. Considering a
smaller and smaller volume, in the limit the outward ﬂc1'>w of current per unit time and
per unit volume (which is recognized as the divergence of current density) must give
the negative of the time rate of change of charge per unit volume at that point:

_p
V-] = Py &)

|
If, however, we take the divergence of J from (4), |
V-]=V-(VXH=

which does not agree with the continuity argument and (5). Maxwell, by reasoning
similar to this, recognized that (4), borrowed from statics, is not complete for time-
varying fields. He postulated an added term dD/dr:

D
VxH=]J+— | 6
I or ! ©
Continuity is now satisfied, as may be shown by taklmg the divergence of (6) and
substituting from (1):

= v =_|_£
v-J at(v D) \at

The term added to form (6) contributes to the curl of Imagnetlc field in the same way
as an actual conduction current density (motion of charges in conductors) or convection
current density (motion of charges in space). Because it arises from the displacement
vector D, it has been named the displacement currentiterm. There is an actual time-
varying displacement of bound charges in a material dielectric, but note that displace-
ment current can be nonzero even in a vacuum. Thus (6) could be written

VXxH=J +1] | N
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where J. = conduction or convection current density in amperes per square meter and
J4 = displacement current density = 9D /dt amperes per square meter.

The displacement current term is important within the dielectric of a capacitor when-
ever the capacitive voltage changes with time. It also always plays a role when moving
charges induce currents in nearby electrodes. Both of these phenomena will be explored
in the following section. Displacement current is negligible for many other low-
frequency problems. For example, it is negligible in comparison with conduction cur-
rents in good conductors up to optical frequencies. (This point will be explored more
in Sec. 3.16.) But displacement current becomes important in more and more situations
as the frequency of time-varying phenomena is increased. It is essential, along with the
Faraday law terms for electric field, to the understanding of all electromagnetic wave
phenomena.

3.5 PHYSICAL PICTURES OF DISPLACEMENT CURRENT

The displacement current term enables one to explain certain things that would have
proved inconsistent had only conduction or convection current been included in the
magnetic field laws. Consider, for example, the circuit including the ac generator and
the capacitor of Fig. 3.5a4. Suppose that it is required to evaluate the line integral of
magnetic field around the loop a~b—c—d—a. The law from statics states that the result
obtained should be the current enclosed, that is, the current through any surface of
which the loop is a boundary. If we take as the arbitrary surface through which current
is to be evaluated one which cuts the wire A, as does S, a finite value is clearly obtained
for the line integral. But suppose that the surface selected is one which does not cut the
wire, but instead passes between the plates of the capacitor, as does S,. If conduction
current alone were included, the computation would have indicated no current passing
through this surface and the result would be zero. The path around which the integral
is evaluated is the same in each case, and it would be quite annoying to possess two
different results. It is the displacement current term which appears at this point to

b
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Fic. 3.5 [Illustrations of how displacement current completes the circuit: (@) in a circuit with
capacitor; (b) near a moving charge.
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preserve the continuity of current between the plates of &1e capacitor, giving the same
answer in either case. !

To show how this continuity is preserved, consider an ideal parallel-plate capacitor
of capacitance C, spacing d, area of each plate A, and applied voltage V;, sin wt. From
circuit theory the charging current is i

dv ‘1
= C? = wCV, cos ot )
t
The field inside the capacitor has a magnitude E = V/d so the displacement current
density is
J oF Yo cos wt 2)
=g— = ws 2 1
47 % d
Total displacement current flowing between the plates is the area of the plate multiplied
by the density of displacement current:

A
I = AJ, = w<87)vo cos wr 3)

The factor in parentheses is recognized as the electrostatic capacitance for the ideal
parallel-plate capacitor, so (1) and (3) are equal. This| value for total displacement
current flowing between the capacitor plates is then exactly the same as the value of
charging current flowing in the leads, calculated by the usual circuit methods above, so
the displacement current does act to complete the circuit, and the same result would be
obtained by the use of either S; or S, of Fig. 3.5a, as required.

Inclusion of displacement current is necessary for a vahd discussion of another ex-
ample in which a charge region g (Fig. 3.55) moves w1r.h velocity v. If the line integral
of magnetic field is to be evaluated about some loop A at a given instant, it should be
possible to set it equal to the current flow for that instant through any surface of which
A is a boundary. If the displacement current term were ignored, we could use any one
of the infinite number of possible surfaces, as S, haviﬁg no charge passing through,
and obtain the result zero. If one of the surfaces is selected, as S,, through which charge
is passing at that instant, however, there is a contribution from convection current and
a nonzero result. The apparent inconsistency is resolved when one notes that the electric
field arising from the moving charge must vary with time, and thus will actually give
rise to a displacement current term through both of the surfaces S; and S,. The sum of
displacement and convection currents for the two surfaces is the same at the given
instant.

Example 3.5 ‘
CURRENTS INDUCED BY A SLAB OF CHARGE MOVING IN A PLANAR DIODE

|
In a planar vacuum diode, as sketched in Fig. 3.5¢, the cathode has been pulsed to
produce a slab of charge moving from cathode to anode.| The density of charge is taken
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Vo

d

FiG. 3.5¢ Slab of charge moving between parallel plates.

as a uniform py. Width is w and at time ¢ the left-hand edge is at x = x' moving with
velocity v. We note that the electric field £, is independent of x for x < x', varies

linearly for x' < x < x' + w, and is again independent of x for x > x' + w. Its integral
is

PD i WZ
—V,.=E.d + =wld — x') - —
@ xt € w 3 2e
Then the electric fields for the three regions 0 < x < x’, x' < x < x' + w, and

x' + w < x < d are, respectively (Prob. 3.5b),

Vo  polx'w w
s B B BE b o
Ex 2 % [ d w(zd )] “)
Baw =20 p BEbl® )l ®en ) en 5)
2T 4 e d 2d

Yo | pow Li
a= 2 = 6
B d ed(l 2) ©

But x’ is a function of time and differentiation with respect to time gives velocity v.
Thus displacement current density for the three regions is

oE wax'  pgwv
a a7y d 2
BE - W
© o pov(d ) &)

0E.5  pgw ox'  powv

ar d o  d ©)
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To the displacement current density of the region within the charge, given by (8), we
add the convection current density p,v so that the sum of convection and displacement
currents is the same for each region, and this will also be the current per unit area
induced in the plane electrodes.

i

3.6 MAXWELL'S EQUATIONS IN DIFFERENTIAL EQUATION FORM
Rewriting the group of equations of Sec. 3.4 with the displacement current term added,
we have

V-D=p 0
V-B=0 )
B
VXE=-— 3)
. ®
VXxH=J+ @

This set of equations, together with certain auxiliary re-!lations and definitions, is the
basic set of equations of classical electricity and magneti§m, governing all electromag-
netic phenomena in the range of frequencies from zero through the highest-frequency
radio waves (and many phenomena at light frequencies) and in the range of sizes above
atomiic size. The equations were first written (not in the %bove notation) by Maxwell in
1863 and are known as Maxwell’s equations. The material in the sections preceding
this should not be considered a derivation of the laws, for they cannot in any real sense
be derived from less fundamental laws. Their ultimate justification comes, as with all
experimental laws, in that they have predicted correctly, and continue to predict, all
electromagnetic phenomena over a wide range of physic‘a\l experience.

The foregoing set of equations is a set of differential equations, relating the time and
space rates of change of the various field quantities at alpoint in space and time. The
use of these will be demonstrated in the following chapters Equivalent large-scale
equations will be given in the following section.

The major definitions and auxiliary relations that must be added to complete the
information are as follows: I

|
1. Force Law This is, from one point of view, merely the definition of the electric
and magnetic fields. For a charge ¢ moving with velomty v through an electric
field E and a magnetic field of flux density B, the force is

f=gE+vXB] N &)
2. Definition of Conduction Current (Ohm’s Law) F?r a conductor,
J=0E A/m* | ()

where o is conductivity in siemens/meter.
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3. Definition of Convection Current For a charge density p moving with velocity
v, the current density is

J=pv, A/m® )

4. Definition of Permittivity (Dielectric Constant) The electric flux density D is
related to the electric field intensity E by the relation

D =¢cE =¢ggE (8)

where g is the permittivity of space ~8.854 X 10~!2 F/m and &, characterizes
the effect of the atomic and molecular dipoles in the material.

As with static fields (Sec. 1.3) ¢, or €, is, in the most general case, anisotropic
and a function of space, time, and the strength of the applied field. But for many
materials it is a scalar constant, and unless specifically noted otherwise, the text
will be concerned with homogeneous, isotropic, linear, and time-invariant mate-
rials for which ¢ is a scalar constant.

5. Definition of Permeability The magnetic flux density B is related to the magnetic
intensity H by

B=puH = upu,H ®)

where u, is the permeability of space = 47 X 1077 H/m and g, measures the
effect of the magnetic dipole moments of the atoms constituting the medium (Sec.
2.3). In general p and u, are anisotropic and functions of space, time, and mag-
netic field strength, but unless otherwise noted they will be considered scalar
constants, representing: homogeneous, isotropic, linear, and time-invariant
materials.

Example 3.6
NONARBITRARINESS OF FORMS WHICH SATISFY MAXWELL'S EQUATIONS

Much of the work for the remainder of the text will be in finding forms that are solutions
of Maxwell’s equations. The interrelationship among electric and magnetic field com-
ponents defined by Maxwell’s equations means that we cannot select arbitrary functions
for any one component. To illustrate the point, let us consider a capacitor formed by
concentric spherical conductors with an ideal dielectric between. As in Ex. 1.4c, Gauss’s
law and symmetry give the electrostatic solution for the dielectric region as

o

472

D=c¢cE=+ (10)

where Q is the charge on the inner sphere. For a sinusoidally time-varying charge, one
might expect the solution

E =4 Q",sin wt (11)
darer=
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A check of V-(¢E) in spherical coordinates shows that it is zero, as expected for the

charge-free dielectric. But consider the Maxwell equation!
oH

VXE=—p— 12

b 12)

The curl of an electric field of the form (11) is zero, so H can only be a function

independent of time. But then the other curl equation

oE

VXH=]J+e— (13)

ot

cannot be satisfied since J is zero for the ideal dielectric, AE/az by (11) is time-varying

but V X H is independent of time. Thus (11), though it may be a useful quasistatic

approximation, is not a true solution of Maxwell’s equatlons Proper solutions in spher-

ical form are discussed in Chapter 10. l
|
|

3.7 MAXWELL'S EQUATIONS IN LARGE-SCALE FORM

It is also convenient to have the information of Maxwell/s equations in large-scale or
integral form applicable to overall regions of space and éaths of finite size. This is of
course the type of relation that we started with in the discussion of Faraday’s law (Sec.
3.2) when we derived the differential expression from it! The large-scale equivalents

for Egs. 3.6(1)-3.6(4) are

§v-as=] pav ’ M)
§B-as=o ; @
fraeton

Equations (1) and (2) are obtained by integrating respectively Eqs. 3.6(1) and 3.6(2)
over a volume and applying the divergence theorem. Equations (3) and (4) are obtained
by integrating, respectively, Egs. 3.6(3) and 3.6(4) over a surface and applying Stokes’s
theorem. For example, integrating Eq. 3.6(1), |

fv-ndv=jpdV‘
v \%

and applying the divergence theorem to the left-hand sidé, (1) follows. Equation (1) is
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seen to be the familiar form of Gauss’s law utilized so much in Chapter 1. Now that
we are concerned with fields that are a function of time, the interpretation is that the
electric flux flowing out of any closed surface at a given instant is equal to the charge
enclosed by the surface at that instant.

Equation (2) states that the surface integral of magnetic field or total magnetic flux
flowing out of a closed surface is zero for all values of time, expressing the fact that
magnetic charges have not been found in nature. Of course, the law does not prove that
such charges will never be found; if they are, a term on the right similar to the electric
charge term in (1) will simply be added, and a corresponding magnetic current term
will be added to (3). We will later find situations in which fictitious magnetic charges
and currents will be helpful and may be added to the equations.

Equation (3) is Faraday’s law of induction, stating that the line integral of electric
field about a closed path (electromotive force) is the negative of the time rate of change
of magnetic flux flowing through the path. The law was discussed in some detail in
Sec. 3.2.

Equation (4) is the generalized Ampere’s law including Maxwell’s displacement
current term, and it states that the line integral of magnetic field about a closed path
(magnetomotive force) is equal to the total current (conduction, convection, and dis-
placement) flowing through the path. The physical significance of this complete law
has been discussed in Secs. 3.4-3.5.

3.8 MAXWELL'S EQUATIONS FOR THE TIME-PERIODIC CASE

By far the most important time-varying case is that involving steady-state ac fields
varying sinusoidally in time. Many engineering applications use sinusoidal fields. Other
functions of time, such as the pulses utilized in a digitally coded system, may be con-
sidered a superposition of steady-state sinusoids of different frequencies. Fourier
analysis (Fourier series for periodic functions and the Fourier integral for aperiodic
functions) provides the mathematical basis for this superposition. Rather than using real
sinusoidal functions directly, it is found convenient to introduce the complex exponen-
tial e/, Electrical engineers are familiar with the advantages of this approach in the
analysis of ac circuits, and physicists use the complex exponential in a variety of phys-
ical problems with sinusoidal behavior. The advantage, which comes from the fact that
derivatives and integrals of e/“' are proportional to e/*' so that the function can be
canceled from all equations, is even more important for the vector field problems than
for scalar problems such as the circuit example. It is assumed that the reader has used
this technique before in circuit analysis or other physical problems, but if review is
needed, the use in analysis of a simple electrical circuit may be found in Appendix 4.
Formally, the set of equations 3.6(1)—3.6(4) is easily changed to the complex form by
replacing 9/dt by jo:

VD= 1)
V-B=20 2

|
©
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VXE= —jwB ! €)
VXxH=1J+jeD | @
And the auxiliary relations, Egs. 3.6(6)—3.6(9), remain
J = oE for conductors 5)
D = eE = g.¢E 6)
B = pH = ppuH | @)

Equations 3.6(5) and 3.6(7) should be used with instantaneous values because of the
nonlinear terms in the equations. The constitutive parameters, w and &, are in general
functions of frequency. Materials for which frequency, dependence is important are
called dispersive. !

It must be recognized that the symbols in the equation$ of this article have a different
meaning from the same symbols used in Sec. 3.6. There they represented the instan-
taneous values of the indicated vector and scalar quantities. Here they represent the
complex multipliers of e/, giving the in-phase and outtof-phase parts with respect to
the chosen reference. The complex scalar quantities are!/commonly referred to as pha-
sors, and by analogy the complex vector multipliers of e/ may be called vector phasors.
It would seem less confusing to use a different notation for the two kinds of quantities,
but one quickly runs out of symbols. The difference is normally clear from the context,
and when there is danger of confusion, we will use functional notation to denote the
time-varying quantities.

If we wish to obtain the instantaneous values of a given quantity from the complex
value, we insert the e/ and take the real part. For example, for the scalar p suppose
that the complex value of p is |

o= tin ®
where p, and p; are real scalars. The instantaneous value of p is then
p(®) = Rel(p, + jp)/™] = p, cos wt — p, sin ot ©
Or, alternatively, if p is given in magnitude and phase,
p = |ple/% x (10)
where ’
bl = V2 + 7
6, = tan™! -Z-: |
The true time-varying form is
p(t) = Rel|ple/“*%)] = |p|cos(wt + 6,) (11)

For a vector quantity, such as E, the complex value may be written
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= E, + jE; (12)
where E, and E; are real vectors. Then
E(t) = Re[(E, + jE)e/'] = E, cos wt — E, sin wt (13)

Note that E, and E; have the same directions in space only for certain special cases.
When they are in the same direction, the vector phasor (12) can be expressed as a vector
“magnitude” and a scalar phase angle, but in the general case, when they are in differ-
ent directions, the six scalar quantities defining the two vectors must be specified
(Prob. 3.8a).

Example 3.8
A PHASOR SOLUTION OF MAXWELL'S EQUATIONS

As an example of phasor solutions, let us consider the following fields, which we will
later find to be important as standing waves:

B, = —jDg sin(wV pyeqx) (14)
Dy
E, = cos(wV HyEgX) (15)
’ vV Koo

Let us show that these do satisfy the phasor forms of Maxwell’s equations. The needed
rectangular coordinate components of (3) and (4), withJ = 0, are

oE, )
= JjwB. (16)
oH, 1 9B,
T = —8-1_ = -jwsoEy an
x Yo Ox
Substitution of (14) and (15) gives
® £
—\/—_”'_"_—0 Dy sin(wV pgegx) = (—j)wDy sin(wV jugegx) (18)
Mo€g
DoV L€ j
70D Fof cos(wV ppgpx) = — /\a/)sﬁeg cos(wV HyggX) (19)
Ko Mo€o

The divergences of (14) and (15) are also found to be zero:

3E,
Z=Q0and —==0 (20)
dy

So the forms (14) and (15) are solutions of the phasor Maxwell equations for this source-
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free region. If we wish the time-varying forms, we insert ¢/ and take the real part:

B,(x, ) = Re[B,e’"] = D, sin(wV pygg) sin ot 21)
. D "
E (x, f) = Re[E /] = 0 cos(wViuyeyx) cos wt (22)
y y A /_,uoao Moo

|

Examples of Use of Maxwell's Equations

3.9 MAXWELL'S EQUATIONS AND PLANE WAVES
|

To make the information of Maxwell’s equations still more concrete, let us show how
the equations predict the propagation of uniform plane electromagnetic waves. Such
waves illustrate the interplay of electric and magnetic effects and are also of great
fundamental and practical importance. Let us begin from the time-varying forms of
Sec. 3.6. We postulate a simple medium with constant, scalar permittivity and perme-
ability and with no free charges and currents (p = 0, J = 0). Maxwell’s equations are
then ‘

V-D=0 | 1)
V-B=0 f )
j

aB oH
VXE=-—=—u—
at 'ua’t ®
|
V><H=§]2=sgE , 0]
ot a |

For uniform plane waves, we assume variation in only one direction. Take this as
the z direction of a rectangular coordinate system. Then'd/dx = 0 and 3/dy = 0. Let
us start with the two curl equations (3) and (4) in rectangular coordinates. With the
specialization defined above,

oE, oH.,
—_ = - X 5
( 62i B at ©)
oH E oH.
VXE= —p— leadsto %= g2 6
Py 4 P Ry (6)
oH,
0= — z 7
; \ B, )
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0H, JE,
(%, =g—= @
0z at
oE oE,
VX H=¢— leadsto { aH'"———s——’ ©®)
at 0z ot
oE
= g —= 10
£ Py (10)

\
Equations (7) and (10) show that the time-varying parts of H, and E, are zero. Thus the
fields of the wave are entirely transverse to the direction of propagation. The remaining
equations break into two independent sets, with (5) and (9) relating E, and H,, and (6)
and (8) relating E and H,,.

The propagation behavior is illustrated by either set. Choose the set with E_and H,
differentiating (6) partially with respect to z and (8) with respect to #:

S, 3°H, PH,  &E,
- = = — _, — = 6 ]
922 9z ot at oz ot

Substitution of the second equation into the first yields

o’E, 3°E,
= E
2 P

1n

The important partial differential equation (11) is a classical form known as the one-
dimensional wave equation, having solutions that demonstrate propagation of a function
(a “wave”) in the z direction with velocity

v = \/E (12)

To show this, test a solution of the form

E(z 1) = f, (t - ;) + fz<t + 5) (13)

Differentiating,
9E, oE, 1 1
X — 1o f! X + —f!
ot fl f?. 3z v fl v f2
a?—E'\' 4 n azE ]' " "
2 1+ /2 622\=z71+172

where the prime denotes differentiation of the function with respect to the entire ar-
gument, and the double prime denotes the corresponding second derivative. Comparison
of the two second derivatives shows that (11) is satisfied by such a solution with v
given by (12). The first term of the solution in (13) represents a function f; moving in
the z direction with velocity v. To show this consider the function f,(z) at various times
as illustrated in Fig. 3.9. To keep on a constant reference of this wave, we must maintain



134 Chapter 3 Maxwell's Equations

20

FiG. 3.9 A general wave of electric field versus distance for three different times.
i

the argument ¢ — z/v equal to a constant. This implies a velocity dz/dt = v. Similarly,
to keep on a constant reference of the second term m| (12) we must keep t + z/v a
constant, implying a velocity dz/dt = —v. Thus the second term represents the function
f> traveling in the negative z direction with velocity v. These moving functions may be
thought of as “waves,” so that the name “wave equation” is explained.

The velocity v defined by (12) is found to be the veloc1ty of light for the medium.
In particular, for free space |

1 |
v=c= = (47 x 1077 X 8.85419 X 10712)~1/2
V g0 14

= 2.9979 X 10® m/s

|
(Note that to three significant figures, this is the conveniently remembered value

3 X 10® m/s, corresponding to &, taken as 1/36m X 10~° F/m.) This equivalence
between the velocity of light and the predicted velocity of electromagnetic waves helped
Maxwell to establish light as an electromagnetic phenomenon.

For a medium with relative permittivity e, and relative permeability u,, the velocity
of the plane wave is then

(15)

Example 3.9
SINUSOIDAL WAVE

The most common and useful wave solution is one varymg sinusoidally in space and
time. Consider the function i
z

E(z,t) = Asin w( - 5) (16)

which is a specml case of (13). To show that ht satisfies (11), perform the
differentiations:
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&E, o z
2 ~;A sin a)(t - ;) an
3E,

pe = = —pe® Asin ot — = (18)
ar? v

But since v? = (ne)~ ! this is a solution. To show that it is a “wave,” we see that we
can stay on a maximum or crest of the function if we set

w(t—£> =@n+ 12, n=012...
v 2

or
; (4n + )mv

2w (19)

so that the crest does move in the z direction with velocity v as time progresses.

3.10 UNIFORM PLANE WAVES WITH STEADY-STATE SINUSOIDS

To show the usefulness of the complex phasor approach for steady-state sinusoids, let
us continue with this important special case. Replacement of Egs. 3.9(6) and 3.9(8)
with the complex phasor equivalents, obtained by replacing time derivatives with jw,
yields

dE. .
= —jouH, W
dHy )

——7?- = jweE, 2)

Here we have utilized the total derivative with respect to z since that is now the only
variable. Differentiation of (1) with respect to z and substitution of (2) yield
4’E,

dz?

= —o?uek, 3)

This is the equivalent of the wave equation, Eq. 3.9(11), but now written in phasor
form. It is called a one-dimensional Helmholtz equation. It could also be obtained by
replacing 8%/dt> with — w? in Eq. 3.9(11). Solution is in terms of exponentials, as can
be verified by substituting in (3)

E, = cie™/ + e 4)

where

k= oVue ®)
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The constant k£ will be met frequently in wave problems! It is a constant of the medium
for a particular angular frequency w and is frequently called the wave number. It may
also be written in terms of the velocity v defined by Eqi 3.9(12):

@

k= ©

v

The first term of (4) is one that changes its phase linearly with z, becoming increas-
ingly negative or lagging as one moves in the positivé z direction. This behavior is
consistent with the interpretation that the sinusoid is traveling in the positive z direction
with velocity v, resulting in a phase constant k rad/m. The second term of (4) is delayed
(becomes more negative) in phase as one moves in the negative z direction and so
represents a negatively traveling wave with the same phase constant.

To show the exact correspondence of this approach with that of Sec. 3.9, let us
convert the phasor form to a time-varying form by the rules given in Sec. 3.8. We
multiply the phasor by the exponential e/*' and take the real part of the product:

E(z, t) = Re[E.e/] = Re[c;e e/ + c,ef* /'] )
For simplicity, take ¢; and c, to be real. Then '
Efz, 1) = ¢, cos(wt — kz) + ¢, cos(wt + kz) (8a)

¢, €OS w(t - i) + o cc}s w(t + i) (8b)
v ; v

Following the interpretation of Sec. 3.9, we see two real sinusoids, the first traveling
in the positive z direction with velocity v and the second traveling in the negative z
direction with the same velocity. The result is then exa«f:tly as in Sec. 3.9.

Figure 3.10a shows the sinusoidal variation of E, with z at a particular instant (say
t = 0). This pattern moves to the right with velocity v if it is a positively traveling
wave and to the left if it is negatively traveling. The distance between two planes with
the same magnitude and direction of E, is called wavelength A and is found by the
distance for which phase changes by 27 ,

/Sinw(t-—z/v) att=0

Fic. 3.10a Sinusoidal function plotted versus distance for one instant of time. For a positively
traveling wave, the function progresses in the positive z direction with velocity v.
|
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A== == )

where f is frequency. Figure 3.10b shows electric field vectors of a sinusoidal wave.
Let us also look at the magnetic fields. Returning to the complex forms, we use the
solution (4) in the differential equation (1):

1 dE\ k — jkz jhz
o dr " w97 T 10

¥

Using the definition of & from (5),

H, = \/Za_ [cie™ — e/ (11
n

The instantaneous equivalent of this is
Hyz, t) = Re[H(2)e/*] = \/—Z- [c; cos(wt — kz) — ¢, cos(wt + kz)]  (12)

13
So E,/H, is V /e for the positively traveling wave and is — "V u/e for the negatively

traveling wave. The consequences of these relationships for problems of wave trans-
mission and reflection are discussed in Chapter 6.

oot

v ? —_—
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FiG. 3.10b Vectors showing magnitude and direction of electric field in a sinusoidal, uniform
plane wave filling the half-space 0 < z for one instant of time. For a positively traveling wave,
pattern moves to right with velocity 1/V pe.
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3.11 THE WAVE EQUATION IN THREE! DIMENSIONS

The one-dimensional example studied in the preceding|two sections is important be-
cause it illustrates wave behavior simply, and also because it is a useful model for many
important practical problems. Nevertheless we have to belconcerned with wave behavior
in two or three dimensions also. To derive the equation governing such phenomena, let
us still specialize to simple media in which & and u are scalar constants and assume no
free charges or convection currents within the region of concern. We may then return
to the special form of Maxwell’s equations given as Egs. 3.9(1) to 3.9(4). Take the curl
of Eq. 3.9(3), interchanging time and space panial derivatives:

VXVXE-= —ny (VxH) ¢))

The left side is expanded by a vector identity. (See infside back cover.) The curl of
magnetic field on the right side utilizes Eq. 3.9(4).

3 ( oE ’’E
—V2E + . = —y — = —
VE + V(V - E) B ( 7 ) ue — @
For a source-free dielectric, V - D = 0 and, if ¢ is not a function of space coordinates,
V- E = 0 also. Then .

&°E

V’E =
Be 52

3)
This is the three-dimensional wave equation to be derived. It will be found useful in a
variety of problems to be considered later, as in the analysis of propagating modes of
a waveguide, resonant modes of a cavity resonator, or radiating waves from an antenna.
Note that the vector equation breaks into three scalar equations, and for rectangular
coordinates it separates into three scalar wave equations of the same form:

62E

@

and similarly for E, and E.. Note that if 3/6x = 0 and a/ay = 0, V? s just 3%/8z% and
we have the one- dlmensmnal wave equation studied in >Sec 3.9:
PE,  OE,
oz ® o

&)

The wave equation applies also to magnetic field for the simple medium considered
here, as can be shown by taking the curl of Eq. 3.9(4)7 and substituting Eq. 3.9(3) to
obtain

*H
2 — 2>
V?H = pe ol ©)
i
In complex or phasor notation these reduce to three-dimensional Helmholtz equa-
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tions, obtained by replacing 8°/dt> with — «? in (3) and (6):

VE = —KE ™
phasor forms < V?H = —/°H 8)
P = w’ue )

Example 3.11
RESONANT WAVE SOLUTION FOR A RECTANGULAR BOX

We have seen that the wave equation has traveling-wave solutions. It also has standing-
wave solutions under proper boundary conditions. Consider

E. = C cos k. sin k,y sin k.z (10)
We use the .x component of (7), expressed in rectangular coordinates:

VE,  PE,  FE. _

o2t 0’ o= —KE, 1n
Carrying out the differentiations,
—-KE, - KE. — KE, = —FE,
or
e+ k+k2=1F (12)

So the phase constants in the three directions must be related by the condition (12). We
shall see in Chapter 10 that this relation, combined with boundary conditions at the
conducting walls, gives the conditions for resonance of waves in a rectangular cavity
resonator.

3.12 POWER FLOW IN ELECTROMAGNETIC FIELDS: POYNTING'S THEOREM

The preceding sections have shown how electromagnetic waves may propagate through
space or a dielectric. We know from experience that such waves can carry energy. The
sun’s rays, which are now known to be electromagnetic waves, warm us. The radio
waves from a distant antenna bring power, admittedly small, to drive the first amplifier
stage of a receiver. For lumped electrical circuits we express power through voltage
and current. For electromagnetic fields, we can find a similar but more general rela-
tionship giving power and energy relationships in terms of the fields. The resulting
theorem, Poynting’s theorem, is one of the most fundamental and useful relationships
of electromagnetic theory.
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We start with the time-varying forms (Sec. 3.6) and write the two curl equations of
Maxwell:

B
X — —
VXE v : 1)
oD
XH=J+—
VXH=J+— | @)

An equivalence of vector operations (inside back covenS shows that

H-(VXE)——E~(VXH)=V,-(EXH) 3)
If products involving (1) and (2) are taken as ind_ic:ated;l (3) becomes
aB aD |
H-— — —E-J V- (E x H) @)

This may now be integrated over the volume of concern:

J’ (H‘§+E'@+E'J>d‘/= —fV-(EXH)dV
v ot at v

From the divergence theorem (Sec. 1.11), the volume integral of div(E X H) equals
the surface integral of E X H over the boundary.

|
J(H-@+E-QB+E-J)JV=43€(EXH)'dS )
v at ot }s

This is the important Poynting’s theorem and in this form is valid for general media
since we have so far made no specializations with res?ect to the medium. For linear,
time-invariant media (5) can be recast into the form

d(B-H d (D-E
JV[5;<T>+&<T>+EJ:IW|= —3QS(EXH)‘dS (6)

|
Problem 3.12f shows that (6) is consistent with (5) for isotropic media. Equation (6) is

also valid for anisotropic media (Prob. 13.8c). The tem‘1 eE?/2 was shown (Sec. 1.22)
to represent the energy storage per unit volume for an|electrostatic field. If this inter-
pretation is extended by definition to any electric field,? the second term of (6) represents
the time rate of increase of the stored energy in the electric fields of the region. Similarly,
if uH?/2 is defined as the density of energy storage fora magnetic field, the first term
represents the time rate of increase of the stored energy in the magnetic fields of the
region. The third term represents either the ohmic power[ loss if J is a conduction current
density or the power required to accelerate charges if J is a convection current arising
from moving charges. Both of these cases will be illustrated in the examples at the end
of this section. Also, if there is an energy source, E - J} is negative for that source and

3 For an excellent discussion of the arbitrariness of these definitions, refer fo J. A. Stratton,
Electromagnetic Theory, p. 133, McGraw-Hill, New Yor{c 1941,
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represents energy flow out of the region. All the net energy change must be supplied
externally. Thus the term on the right represents the energy flow into the volume per
unit time. Changing sign, the rate of energy flow out through the enclosing surface is

w %P-ds )
s

Il

where
P=EXH 8)

and is called the Poynting vector.

Although it is known from the proof only that total energy flow out of a region per
unit time is given by the total surface integral (6), it is often convenient to think of the
vector P defined by (8) as the vector giving direction and magnitude of energy flow
density at any point in space. Though this step does not follow strictly, it is a most
useful interpretation and one which is justified for the majority of applications. (But
see Prob. 3.12a.)

It should be noted that there are cases for which there will be no power flow through
the electromagnetic field. Accepting the foregoing interpretation of the Poynting vector,
we see that it will be zero when either E or H is zero or when the two vectors are
mutually parallel. Thus, for example, there is no power flow in the vicinity of a system
of static charges that has electric field but no magnetic field. Another very important
case is that of a perfect conductor, which by definition must have a zero tangential
component of electric field at its surface. Then P can have no component normal to the
conductor and there can be no power flow into the perfect conductor.

Example 3.12a
OHMIC LOSS

To demonstrate the interpretation of the theorem, let us take the simple example of a
round wire carrying direct current /., (Fig. 3.12). If R is the resistance per unit length,
the electric field in the wire is known from Ohm’s law to be

E.=IR

The magnetic field at the surface, or at any radius r outside the wire, is

L
Hy,=— 9
¢ 2 ©)
The Poynting vector P = E X H is everywhere radial, directed toward the axis:
RI?
P.=—-EH,= —— (10
! e 27r {10

We then make an integration over a cylindrical surface of unit length and radius equal
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‘L
T \
f

FI6. 3.12 Round wire with Poynting vector directed radially inward to supply power for ohmic
losses. |

- -

to that of the wire (there is no flow through the ends of the cylinder since P has no
component normal to the ends). All the flow is through the cylindrical surface, giving
a power flow inward of amount 5

W = 2ar(—P,) = I°R (11)

‘We know that this result does represent the correct powe?: flow into the conductor, being
dissipated in heat. If we accept the Poynting vector aé giving the correct density of
power flow at each point, we must then picture the baﬁéry or other source of energy as
setting up the electric and magnetic fields, so that the energy flows through the field
and into the wire through its surface. The Poynting theorem cannot be considered a
proof of the correctness of this interpretation, for it says only that the total power balance
for a given region will be computed correctly in this manner, but the interpretation is
nevertheless a useful one.

Example 3.12b
MovING CHARGES

i

Let us next consider the example in which J is a convection current. For simplicity take
a region containing particles of charge value g, mass m, and velocity v,. The convection
current density is

J = pv, = ngv, (12)
where 7 is the density of particles. From the force law the acceleration of charges is

dv,

F =gE = m—j (13)

and the third term in the Poynting theorem (6) is

J’E Jdv = f;jd—p (nqv,) 4V = J'mnd(v)dv (14)
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which we recognize to be the rate of change of the total kinetic energy of the charge
group. In this example we will not try to work out the right side of (6), but the E in
that term is related to the accelerating field, the H is that from the convection current,
and the Poynting theorem will always be satisfied.*

Example 3.12¢
POYNTING FLOW IN A PLANE WAVE

Finally we look at the Poynting theorem applied to the plane electromagnetic wave
studied in preceding sections. The form of a sinusoidally varying wave with E and H,
propagating in the positive z direction was shown to be

E. = E, cos(wt — kz) (15)

H), = \/-8;- Ey cos(wt — kz) (16)

The Poynting vector is then in the z direction, which is consistent with our interpretation
that power is flowing in that direction:

P.=EH, = \/% E2 cosXwt — k2) 17

By the use of a trigonometric identity this is also

1 1
P. = \/EE%[- + = cos 2(wt — kz):] (18)
18 2 2

Note that there is a constant term showing that the wave carries an average power, as
expected. There is also a time-varying portion representing the redistribution of stored
energy in space as maxima and minima of fields pass through a given region.

3.13 POYNTING'S THEOREM FOR PHASORS

Because of the importance of phasors for sinusoidal electromagnetic fields, we need
the Poynting theorem in phasor form also. It might seem that we could simply substitute
in the time-varying theorem, Eq. 3.12(5), replacing d/dt by jw, but this does not work
since the expression is nonlinear, involving products of the fields. We start with Max-
well’s equations in complex form and derive the complex Poynting theorem by steps

4 If the charges move through the surface surrounding the region, the net kinetic energy

transport by the charge stream through the surface is also included. This is actually con-
tained in the third ferm on the left as shown by L. Tonks, Phys. Rev. 54 863 (1938).
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|
parallel to those used for the theorem in time-varying field quantities. The two curl
equations in complex phasor form are (Sec. 3.8)

VXE= —joB ' 1)
VXxH=1]+ juD o))

Consider the vector identity |
V.- EXHY=H*(VXE)—-E:-(VXH* 3)

where the asterisk denotes the complex conjugate. Equations (1) and (2) may now be
substituted in this identity: |

V. (E X H¥ = H*- (—jwB) — Ej J* — joD®) @)

This expression is integrated through volume V and thc‘a divergence theorem utilized:

]

§ (E X H¥) - dS |
s |

' )

1%

|
Equation (5) is the general Poynting theorem as it applies to complex phasors. To
interpret, consider an isotropic medium in which all lpsses occur through conduction
currents J = oE so that o, u, and ¢ are real scalars. Then (5) becomes

fV-(EXH*)dV
v

|
3§(Exﬂ*)-ds= —j crE-E*dV—ij[jy,H-H*-sE-E*]dV 6)
N 14 v !

The first volume integral on the right side representl[s power loss in the conduction
currents and is just twice the average power loss. (See| Appendix 4.) Thus the real part
of the complex Poynting flow on the left side can be related to this power loss. Or,
interpreting the Poynting vector itself as a density of power flow as in Sec. 3.12,

P, = L1Re(E X H*) W/m? )

av

The second volume integral on the right of (6) is proportional to the difference
between average stored magnetic energy in the volume and average stored electric
energy. Taking into account a factor of 3 in the energy expressions and another 3 for
averaging of squares of sinusoids, we can then interpr;et the imaginary part of (6) as

Imsﬂ (E X H¥) - dS = 4w<a};—f:w = Upay) ®
S

where Upg,, is average stored energy in electric fields and Uy., that in magnetic fields.
So the imaginary part of the Poynting flow through the surface can be thought of as
reactive power flowing back and forth to supply the in%tantaneous changes in net stored
energy in the volume. |
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Example 3.13
AVERAGE POWER IN UNIFORM PLANE WAVES

To illustrate the average Poynting vector for the plane-wave case, let us take the field
expressions for plane waves derived in complex form in Sec. 3.10:

E. = e + c,e* )
e —jkz ke
H, = /: [cre™ — cpe™] (10)
M
The complex Poynting vector is then
E X H* = \/% [cie ™ + cre®)[chel — che ]z (11)
and the average power density, by (7), is in the z direction and equal to
1 /e * s 2
P, = 2 ; [e,c] — 3] W/m (12)

This equation states that the average power is simply the average power of the positively
traveling wave minus that of the negatively traveling wave. The cross-product terms of
(11) contribute only to reactive power, that is, to the interchange of stored energy within
the wave.

3.14  CONTINUITY CONDITIONS FOR AC FIELDS AT A BOUNDARY:
UNIQUENESS OF SOLUTIONS

In the study of static fields, certain boundary and continuity conditions were stated for
such fields and were found essential in the solution of the field problems by the use of
the differential equations. Similarly, for the use of Maxwell’s equations in differential
equation form, we need corresponding boundary and continuity conditions.

Consider first Faraday’s law in large-scale form, Eq. 3.2(3), applied to a path formed
by moving distance A/ along one side of the boundary between any two materials and
returning on the other side, an infinitesimal distance into the second medium (Fig.
3.14a). The line integral of electric field is

%E Sdl = (Ell - Erz) Al (1)

Since the path is an infinitesimal distance on either side of the boundary, it encloses
zero area; therefore the contribution from changing magnetic flux is zero so long as
rate of change of magnetic flux density is finite. Consequently,

(Efy — E;)Al=0 or E; =E, 2)
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Etj ﬁ
»»‘»%m%
2 E

Fic. 3.14a Continuity of tangential electric field comporflents at a dielectric boundary.

Similarly, the generalized Ampére law in large-scale form, Eq. 3.7(4), may be applied
to a like path with its two sides on the two sides of the boundary. Again zero area is
enclosed by the path, and, so long as current density and rate of change of electric flux
density are finite, the integral is zero. Thus, as in (2),

H, = H, (3

Or in vector form, by use of the unit vector fi normal to the boundary as shown in Fig.
3.14a, (2) and (3) can be written as

AXE -E)=0 @
i X MH -H)=0 )]

Thus tangential components of electric and magnetic field must be equal on the two
sides of any boundary between physically real media. The condition (3) may be modi-
fied for an idealized case such as the perfect conductor where the current densities are
allowed to become infinite. This case is discussed separately in Sec. 3.15.

The integral form of Gauss’s law is Eqg. 3.7(1). If two very small elements of area
AS are considered (Fig. 3.14b), one on either side of the boundary between any two
materials, with a surface charge density p, existing on the boundary, the application of
Gauss’s law to this elemental volume gives

ASD,; = D,p) = p; AS
or
D, — D, = ps (6)
For a charge-free boundary,
D,y =D, or gk, = ‘;32En2 @

That is, for a charge-free boundary, normal components of electric flux density are
continuous; for a boundary with charges, they are discbntmuous by the amount of the
surface charge density. "

Since there is no magnetic charge term on the right of Eq. 3.7(2), a development
corresponding to the above shows that always the magnetic flux density is continuous:

Bnl = BnZ or lJ‘lHnl = ;1’21_1172 (8)

For the time-varying case, which is of greatest importance to our study, the conditions
on normal components are not independent of those given for the tangential compo-
nents. The reason is that the former are derived from the divergence equations (or their
equivalent in large-scale form), and these may be obtained from the two curl equations
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Fic. 3.14b Diagram showing how discontinuity in normal components of electric flux density
at a boundary is related to surface charge density.

in the time-varying case (Prob. 3.6b). The conditions on tangential components were
derived from the large-scale equivalents of the curl equations. Hence, for the ac solu-
tions, it is necessary only to apply the continuity conditions on tangential components
of electric and magnetic fields at a boundary between two media, and the conditions
on normal components may be used as a check; if the normal components of D turn
out to be discontinuous, (6) tells the amount of surface charge that is induced on the
boundary.

Uniqueness The procedure to prove the uniqueness of solutions of Maxwell’s equa-
tions follows the philosophy in Sec. 1.17. One assumes two possible solutions with the
same given tangential fields on the boundary of the region of interest. The difference
field is formed, and found to satisfy Poynting’s theorem in the form of Eq. 3.12(5).
Stratton® shows that for linear, isotropic (but possibly inhomogeneous) media, speci-
fication of tangential E and H on the boundary and of initial values of all fields at time
zero is sufficient to specify fields uniquely within the region at all later times. The
argument can be extended to anisotropic materials and certain classes of nonlinear
materials, but not to materials that have multivalued relations between D and E (or B
and H) or to “active” materials that produce oscillations. In steady-state problems we
are not generally concerned with the specifications of initial conditions.

Although the discussion has been given for a region with closed boundaries, unique-
ness arguments also apply to open regions extending to infinity, provided certain ra-
diation conditions are satisfied by the fields. These require that the products 7E and rH
remain finite as r approaches infinity® and are satisfied by fields arising from real charge
and current sources contained within a finite region. The extension to open regions is
important to the potential formulation of the last part of this chapter.

5 J. A Stratton, Blectromagnetic Theory, pp. 486-488, McGraw-Hill, New York, 1941,
¢ S Silver, Microwave Antenna Theory and Design, p. 85, IEEE Press, New York, 1984.
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3.15 BOUNDARY CONDITIONS AT A PERFECT CONDUCTOR FOR AC FIELDS

It is a good approximation in many practical problems to treat good conductors (such
as copper and other metals) as though of infinite conductivity when finding the form
of fields outside the conductor. We will study the effect of large but finite conductivity
on fields within the conductor in Sec. 3.16. When we do, we will find that all fields and
currents concentrate in a thin region or “skin” near the surface for time-varying fields,
and this region approaches zero thickness as the conductivity approaches infinity. Thus,
for the perfect conductor (infinite conductivity), we find/that all fields are zero inside
the conductor and any current flow must be only on the surface. The physical properties
of perfect conductors are discussed in Sec. 13.4. Since the electric field is zero within
the perfect conductor, continuity of tangential electric field at a boundary requires that
the surface tangential electric field be zero just outside the boundary also,

E, =0 | 1)
and Eq. 3.14(6) gives the normal electric flux density as
D, = p, @

Furthermore, since magnetic fields also vanish inside the conductor, the statement of
continuity of magnetic flux lines, Eq. 3.14(8), indicates that

B, =0 : 3)

n

at the conductor surface. As was pointed out in the last section, however, the continuity
condition on normal B is not independent of the condition on tangential E in the time-
varying case. Thus, in the ac solution, (3) follows from (1), but may sometimes be
useful as a check or as an alternative boundary condition.

The tangential component of magnetic field is likewise zero inside the perfect con-
ductor but is not in general zero just outside. This discontinuity would appear to violate
the condition of Eq. 3.14(3), but it will be recalled that a condition for that proof was
that current density remain finite. For the perfect conductor, the finite current J per unit
width is assumed to flow on the surface as a current sheet of zero thickness, so that
current density is infinite. The discontinuity in tangential magnetic field is found by a
construction similar to that of Fig. 3.14a. The current enclosed by the path is the current
per unit width J flowing on the surface of the conductor perpendicular to the direction
of the tangential magnetic field at the surface. Then

§Hm=mm=4ﬂ
or

J,=H, A/m : C))

where J, is current per unit width, called a surface current density. The direction and
sense relations for (4) are given most conveniently by the vector form of the law below.
To write the relations of (1)—(4) in vector notation, a unit vector fi, normal to the
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A

Fic. 3.15 Conducting boundary with the normal unit vector.

conductor at any given point and pointing from the conductor into the region where
fields exist, is defined (Fig. 3.15). Then conditions (1)—(4) become:

AXE=0 (%)
A-B =0 (6)
p,=R-D )
J,=hXxH ®)

For an ac problem, (5) represents the only required boundary condition at a perfect
conductor. Equation (6) serves as a check or sometimes as an alternative to (5). Equa-
tions (7) and (8) are used to give the charge and current induced on the conductor by
the presence of the electromagnetic fields.

3.16 PENETRATION OF ELECTROMAGNETIC FIELDS INTO A GOOD CONDUCTOR

Maxwell’s equations have been illustrated by showing the wave behavior of electro-
magnetic fields in good dielectrics. A second extremely important class of materials
used in many electromagnetic problems is that of “good conductors.” Let us examine
the basic behavior of electromagnetic fields in such conductors. The development in
this and the following section will be for steady-state sinusoids using phasor notation,
with the usual understanding that more general time variations may be broken up into
a series or continuous distribution of such sinusoids. The conductors of concern are
those satisfying Ohm’s law,

J = oFE (1)

The constant o is the conductivity of the conductor. At optical frequencies metals are
not well represented by a real constant ¢, but the approximation is valid for microwaves
and millimeter waves (Sec. 13.3). Substitution of (1) into the Maxwell equation 3.8(4)
gives

VX H = (¢ + joe)E (2)

It is easy to show that the assumption of Ohm’s law implies the absence of charge
density. Since the divergence of the curl of any vector is zero,

V- VXH=(oc+ jwe)V-E=0
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where we have assumed homogeneity of o and &. Thus
V-D=p=0 3)

The simple picture of the situation in a conductor is that mobile electrons drift through
a lattice of positive ions, encountering frequent collisions. On the average, over a vol-
ume large compared with the atomic dimensions but small compared with dimensions
of interest in the system under study, the net charge is zero even though some of the
charges are moving through the element and causing current flow. The net movement
or “drift” in such cases is found proportional to the electric field.

For metals and other good conductors, it is found that displacement current is neg-
ligible in comparison with conduction current for microwave and millimeter-wave fre-
quencies, and in fact is not measurable until frequencies are well into the infrared. For
the present we concentrate on the important cases for which we in (2) is negligible in
comparison with o.

Thus, to summarize, the following specializations are appropriate to Maxwell’s equa-
tions applied to good conductors, and may in fact be taken as a definition of a good
conductor.

1. Conduction current is given by Ohm’s law, J = oE.

2. Displacement current is negligible in comparison with current, we << o.

3. As a consequence of (1), the net charge densi'ity is zero for homogeneous
conductors.

To derive the differential equation which determines the penetration of the fields into
the conductor, we first take the curl of the Maxwell curl equation for electric field, Eq.
3.8(3), and make use of a vector identity (see inside back cover) and the definition of
permeability to obtain '

VXVXE=VV-E) — VE = —jouV X H @)
Then using (3) and substituting (2) in (4) with displacement current neglected, we find
V’E = joucE l 5)

Equations with forms identical to (5) can be found in a similar way for magnetic field
and current density:

VH = joucH (6)
V3 = jopol @)

We first consider the differential equations (5)—(7) for the simple but useful example
of a plane conductor of infinite depth, with no field variations along the width or length
dimension. This case is frequently taken as that of a conductor filling the half-space
x > 0 in a rectangular coordinate system with the y—z plane coinciding with the con-
ductor surface, and is then spoken of as a “semi-infinite solid.” In spite of the infinite
depth requirement, the analysis of this case is of importance to many conductors of
finite extent, and with curved surfaces, because at high frequencies the depth over which
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significant fields are concentrated is very small. Radii of curvature and conductor depth
may then be taken as infinite in comparison. Moreover, any field variations along the
surface due to curvature, edge effects, or variations along a wavelength are ordinarily
so small compared with the variations into the conductor that they may be neglected.

For the uniform field situation shown in Fig. 3.16a with the electric field vector in
the z direction, we assume no variations with y or z and (5) becomes

dZE_, . ,
d.ll = ](U/.LO'EE = 1_Ez (8)
where
28 jopo )

Since Vj = a+ 5/ V2 (taking the root with the positive sign),

7=+ j))Vafuo = 1—21 (10)
where
1
6 = 11
e m (11

A complete solution of (8) is in terms of exponentials:
E, = Cie™™ + Cue™ (12)

The field will increase to the impossible value of infinity at x = o unless C, is zero.
The coefficient C; may be written as the field at the surface if we let E, = E; when
x = 0. Then

E. = Ege ™ (13)

Or, in terms of the quantity & defined by (10) and (11),
E. = Ege /% /8 (14)
Since the magnetic field and the current density are governed by the same differential
equation as the electric field, forms identical to (14) apply; that is,
H, = Hye */%™7/° (15)
J, = Jye /% i/® (16)
where H, and J, are the magnitudes of the magnetic field and current density at the
surface.
It is evident from the forms of (14)—(16) that the magnitudes of the fields and current
decrease exponentially with penetration into the conductor, and 6 has the significance

of the depth at which they have decreased to 1/e (about 36.9%) of their values at the
surface, as indicated in Fig. 3.16a. The quantity & is accordingly called the depth of
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FiG. 3.16a Plane solid illustrating decay of current into conductor.
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Fic. 3.16b Skin depth and surface resistance for copper at two temperatures and for two su-
perconductors. Note that the skin depth for superconductors is (1 + j) times a real number, so
penetration of fields and current density in Egs. 3.16(14—16) have only the real exponential decay.
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penetration, or skin depth. The phases of the current and fields lag behind their surface
values by x/8 radians at depth x into the conductor. The penetration depths for copper
at room temperature (300 K) and 77 K are shown in Fig. 3.16b. Except for ferromagnetic
and ferrite materials, u =~ p.

Example 5.16 i e
SKIN DEPTH IN AUDIO TRANSFORMER WITH IRON CORE

An audio frequency transformer has a core made of iron with & = 0.5 X 107 and
u = 1000p,. It is designed to work up to 15 kHz. Let us find the skin depth at this
highest design frequency. From (11)

8= (m X 15 X 10®* X 10®> X 47 X 1077 X 0.5 X 107)~1/2 an
= (3072 X 109)"/2 = 0.058 X 1073 m = 0.058 mm

Note that this is more than 30 times smaller than for a material of the same conductivity
but with a relative permeability of unity.

Advantageous electromagnetic behavior can be obtained in circumstances where
cooling to cryogenic temperatures is possible if superconductors are used.’” For reasons
to be explained in Sec. 13.4, the conductivity is complex and frequency dependent, and
0 is constant up to about 100 GHz at (1 + j) times the value of the dc penetration
depth A,. Values of & found experimentally for niobium at 4 K and for the oxide
superconductor YBa,Cu,0,_,, or simply Y-Ba-Cu-O, are shown in Fig. 3.16b for
comparison with the frequency-dependent values for copper. The oxide superconductor
Y-Ba—Cu-O has an anisotropic crystal structure; it is assumed here that the highly
conducting Cu—O planes are parallel to the surface. The behavior is otherwise more
complicated.

3.17 INTERNAL IMPEDANCE OF A PLANE CONDUCTOR

The decay of fields into a good conductor or superconductor may be looked at as the
attenuation of a plane wave as it propagates into the conductor or from the point of
view that induced fields from the time-varying currents tend to counter the applied
fields. The latter point of view is especially applicable to circuits, in which case we
think of the field at the surface as the applied field. Currents (resulting from oE) con-
centrate near this surface and the ratio of surface electric field to current flow gives an
internal impedance for use in circuit problems. By internal, we mean the contribution

7 T. Van Duzer and C. W. Turner, Principles of Superconductive Devices and Circuits, Sec.

3.14, Elsevier, New York, 1981. (To be reissued by Prentice Hall.)



154 Chapter 3 Maxwell's Equations

to impedance from the fields penetrating the conductor. This gives, in general, a re-
sistance term and an internal inductance, the latter to be added to any external induct-
ance contribution arising from the fields outside the conductor.

The total current flowing past a unit width on the surface of the plane conductor is
found by integrating the current density, Eq. 3.16(16), from the surface to the infinite
depth: |

= > : | Jo
J, = J J.dx = f Joe~AFNCI gy = 0 1
. L o s T+ 1)
The electric field at the surface is related to the currentidensity at the surface by
J
Eo =" )
o
Internal impedance for a unit length and unit width is defined as
A EzO 1+ .]
Z = T = — 3
£y JSZ 0‘6 : ( )
With the further definition !
Z, B R, +jeL, )
We then have }
1 i
R === [T )
od o
L, L R (6)
WL, = — =
1 0_,5 8§

With o real, the resistance and internal reactance of such a plane conductor are equal
at any frequency. The internal impedance Z; thus has| a phase angle of 45 degrees.
Equation (5) gives another interpretation of depth of penetration 8, for this equation
shows that the skin-effect resistance of the semi-infinite/plane conductor is the same as
the dc resistance of a plane conductor of depth 8. That is, resistance of this conductor

Table 35.17a
Skin Effect Properties of Typical Metals
Conductivity Depth of Penetration Surface Resistivity
o (S/m) 8 (m) R. ()
Silver (300 K) 6.17 x 107 0.0642f~1/2 2.52 x 1077f1/2
Aluminum (300 K) 3.72 x 107 0.0826f~1/2 3.26 X 1077f1/2
Brass (300 K) 1.57 x 107 0.127f1/2 5.01 X 1077F1/2
Copper (300 K) 5.80 x 107 0.0665 /2 2.61 x 10775172

Copper (77 K) 18 x 107 0.037f1/2 15 X 10-7f1/2
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Table 3.17b
Skin Effect Properties of Typical Superconductors
Surface
Complex Conductivity Penetration Depth Resistivity
o= o, —jo, (S/m) A, = 8/(1 + j)(m) R (Q)
YBa,Cu;y0,_, (77 K) 8.2 X 10° — j20 x 10'7f~! 250 X 10~° 40 X 10~ %2
Niobium (4 K) 5.2 X 108 — j175 x 10'7f~! 85 x 10~° 1.0 X 10-%5f2

with exponential decrease in current density is the same as though current were uni-
formly distributed over a depth &.

The resistance R, of the plane conductor for a unit length and unit width is called
the surface resistivity. For a finite area of conductor, the resistance is obtained by
multiplying R, by length, and dividing by width since the width elements are essentially
in parallel. Thus the dimension of R, is ohms or, as it is sometimes called, ohms per
square. Like the depth of penetration §, R, as defined by (5) is also a useful parameter
in the analyses of conductors of other than plane shape, and may be thought of as a
constant of the material at frequency f.

Superconductors are somewhat different from the good conductor discussed above
in having a complex conductivity with the result that the surface resistance and reactance
terms are not equal. But the definitions in (3) and (4) still apply. Again, u = u,. They
differ also in that R, increases as f> rather than as f172, as in the case of a good
conductor. Values of depth of penetration (skin depth) and surface resistivity are tabu-
lated for several metals in Table 3.17a and are plotted in Fig. 3.16b as functions of
frequency. Table 3.17b gives experimentally derived data for the complex conductivity,
penetration depth, and surface resistance for two prominent superconductors; the
penetration depth and surface resistance are also plotted in Fig. 3.16b as functions of
frequency.

Example 3.17
APPROXIMATE INTERNAL IMPEDANCE OF A COAXIAL LINE

The usefulness of this concept for practical problems may now be illustrated by con-
sidering the coaxial transmission line of Fig. 3.17. We select as a circuit path one which
follows the outer surface of the inner conductor, AB, traversing radially across to C and
then following the inner surface of the outer conductor CD, returning back radially to
A. The difference between voltages V,, and V., will arise in part because of the in-
ductance calculated from flux within the path ABCDA, that is, the inductance external
to the conductors. We consequently call this the external inductance and recognize it
as that found for a coaxial line in Chapter 2. But there is also a voltage contribution
along the path AB due t